## The package can be installed using the following code # library(devtools) # install_github("yunzhang813/???", build_vignettes=TRUE) ## Load the package library(simDeNet)
data("celltype")
## get two cell types mu.T <- expr[,ctab$Fastq_file_name[which(ctab$X3_letter_code=="ASM")]] mu.N <- expr[,ctab$Fastq_file_name[which(ctab$X3_letter_code=="AEC")]] ## parameters n.samp <- 5 rho <- c(0.9,0.8,0.7) block.size <- c(5,10,15) dd <- NULL str.type <- "interchangeable" multiplier <- 1 select.gene <- "random" ## mixing proportion of cell type T prop.T <- seq(0, 1, length=n.samp) ## one-step simulation set.seed(999) out.oneStepSim <- oneStepSim(n.samp, mu.T, mu.N, Sigma.T=NULL, Sigma.N=NULL, prop.T=prop.T, # structure for Sigma.T block.size=block.size, rho=rho, dd=dd, str.type=str.type, multiplier=1, # selected genes to add structure select.gene=select.gene)
## deconvolution tt <- system.time(out.deconv <- deconv(mixed=out.oneStepSim$expr.mixed, ref=out.oneStepSim$expr.pure.N))
## simulated data data.list <- list(out.oneStepSim$expr.pure.T, out.oneStepSim$expr.mixed, out.deconv$expr.deconv) names(data.list) <- c("pure","mixed","deconvoluted") ## ture structure true.str <- out.oneStepSim$true.str.T ## one step analysis out.WGCNA <- oneStepAnalysis(data.list,true.str,method="WGCNA") ## plot ROC curves plot(out.WGCNA$pure$perf, lwd=2) plot(out.WGCNA$mixed$perf, add=TRUE, col=2, lwd=2) plot(out.WGCNA$deconvoluted$perf, add=TRUE, col=3, lwd=2) legend("bottomright", paste(c("pure","mixed","deconv"), ": AUC =", round(c(out.WGCNA$pure$AUC, out.WGCNA$mixed$AUC, out.WGCNA$deconvoluted$AUC),3)), col=1:3, lty=1, lwd=5) title(paste("WGCNA"))
library(WGCNA) ## If softPower = 1, the adjacency matrix is simply the absolute correlation matrix softPower <- 1 ## pure samples datExpr.pure <- as.data.frame(t(out.oneStepSim$expr.pure.T)) # NOTE: rows=samples, columns=genes est.str.pure <- adjacency(datExpr.pure, power = softPower) ## mixed samples datExpr.mixed <- as.data.frame(t(out.oneStepSim$expr.mixed)) # NOTE: rows=samples, columns=genes est.str.mixed <- adjacency(datExpr.mixed, power = softPower) ## deconvoluted samples datExpr.deconv <- as.data.frame(t(out.deconv$expr.deconv)) # NOTE: rows=samples, columns=genes est.str.deconv <- adjacency(datExpr.deconv, power = softPower)
## evaluate ROC and AUC out.ROC.pure <- eval.ROC(est.str=est.str.pure, true.str=out.oneStepSim$true.str.T, plot.ROC=TRUE, main="Pure samples") out.ROC.mixed <- eval.ROC(est.str=est.str.mixed, true.str=out.oneStepSim$true.str.T, plot.ROC=TRUE, col=2, main="Mixed samples") out.ROC.deconv <- eval.ROC(est.str=est.str.deconv, true.str=out.oneStepSim$true.str.T, plot.ROC=TRUE, col=3, main="Deconvoluted samples") ## combined plot library(ROCR) plot(out.ROC.pure$perf, lwd=2) plot(out.ROC.mixed$perf, add=TRUE, col=2, lwd=2) plot(out.ROC.deconv$perf, add=TRUE, col=3, lwd=2) legend("bottomright", paste(c("pure","mixed","deconv"), ": AUC =", round(c(out.ROC.pure$AUC, out.ROC.mixed$AUC, out.ROC.deconv$AUC),3)), col=1:3, lty=1, lwd=5) title(paste("WGCNA", paste0("S",n.samp), str.type, select.gene, sep = ", ")) abline(0,1,col="grey")
library(minet) ## pure tumor samples net.pure <- minet(datExpr.pure, method = "aracne") ## mixed samples net.mixed <- minet(datExpr.mixed, method = "aracne") ## ISOpure tumor samples net.deconv <- minet(datExpr.deconv, method = "aracne")
## evaluate ROC and AUC out.ROC.pure <- eval.ROC(est.str=net.pure, true.str=out.oneStepSim$true.str.T, plot.ROC=TRUE, main="Pure samples") out.ROC.mixed <- eval.ROC(est.str=net.mixed, true.str=out.oneStepSim$true.str.T, plot.ROC=TRUE, main="Mixed samples", col=2) out.ROC.deconv <- eval.ROC(est.str=net.deconv, true.str=out.oneStepSim$true.str.T, plot.ROC=TRUE, main="Deconvoluted samples", col=3) ## combined plot plot(out.ROC.pure$perf, # xlim=c(0,max(out.ROC.pure$xval,out.ROC.mixed$xval,out.ROC.deconv$xval)), # ylim=c(0,max(out.ROC.pure$yval,out.ROC.mixed$yval,out.ROC.deconv$yval)), lwd=2) plot(out.ROC.mixed$perf, lwd=2, add=TRUE, col=2) plot(out.ROC.deconv$perf, lwd=2, add=TRUE, col=3) legend("bottomright", paste(c("pure","mixed","deconv"), ": AUC =", round(c(out.ROC.pure$AUC, out.ROC.mixed$AUC, out.ROC.deconv$AUC),3)), col=1:3, lwd=5) title(paste("ARACNE", paste0("S",n.samp), str.type, select.gene, sep = ", "))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.