Description Usage Arguments Details Value Examples
This function takes simulated data and estimates network based on WGCNA (correlation-based), ARACNE (mutual information-based) or Bayesian algorithms.
1 | netEstByMethod(data.list, method, softPower=1)
|
data.list |
a list of simulated data, e.g. |
method |
method used to estimate network. Options: |
softPower |
soft power used in WGCNA. Default: |
This function uses adjacency()
for method="WGCNA"
, minet()
for method="ARACNE"
, hc(),bn.fit()
for method="Bayesian"
, and simply var()
for method="GLASSO"
for network estimation.
This function returns a list of estimated networks, coresponding to the input data list.
1 2 3 4 5 6 7 8 9 10 11 12 | ## Not run:
## simulated data
data.list <- list(out.oneStepSim$expr.pure.T, out.oneStepSim$expr.mixed, out.deconv$expr.deconv)
names(data.list) <- c("pure", "mixed", "deconvoluted")
## one step analysis
net.WGCNA <- netEstByMethod(data.list, method="WGCNA")
net.ARACNE <- netEstByMethod(data.list, method="ARACNE")
net.Bayesian <- netEstByMethod(data.list, method="Bayesian")
net.GLASSO <- netEstByMethod(data.list, method="GLASSO")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.