View source: R/individual_clustering.R
1 2 3 4 5 | individual_clustering(inputTags, mt_filter = TRUE, mt.pattern = "^MT-", mt.cutoff = 0.1,
SC3 = TRUE, gene_filter = FALSE, svm_num_cells = 5000, CIDR = TRUE, nPC.cidr = NULL,
Seurat = TRUE, nGene_filter = TRUE, low.genes = 200, high.genes = 8000, nPC.seurat = NULL, resolution = 0.7,
tSNE = TRUE, saver = FALSE, dimensions = 3, perplexity = 30, tsne_min_cells = 200, tsne_min_perplexity = 10,
var_genes = NULL, SEED = 1)
|
inputTags |
a G*N matrix with G genes and N cells. |
mt_filter |
is a boolean variable that defines whether to filter outlier cells according to mitochondrial gene percentage. Default is "TRUE". |
mt.pattern |
defines the pattern of mitochondrial gene names in the data, for example, |
mt.cutoff |
defines a high cutoff of mitochondrial percentage (Default is 10 \itemSC3a boolean variable that defines whether to cluster cells using SC3 method. Default is "TRUE". \itemgene_filtera boolean variable defines whether to perform gene filtering before SC3 clustering, when svm_num_cells, if CIDRa boolean parameter that defines whether to cluster cells using CIDR method. Default is "TRUE". \itemnPC.cidrdefines the number of principal coordinates used in CIDR clustering, when Seuratis a boolean variable that defines whether to cluster cells using Seurat method. Default is "TRUE". \itemnGene_filteris a boolean variable that defines whether to filter outlier cells according to unique gene count before Seurat clustering. Default is "TRUE". \itemlow.genesdefines a low cutoff of unique gene counts (Default is 200) that cells having less than 200 genes are filtered out, when high.genesdefines a high cutoff of unique gene counts (Default is 8000) that cells having more than 8000 genes are filtered out, when nPC.seuratdefines the number of principal components used in Seurat clustering, when resolutiondefines the value of resolution used in Seurat clustering, when tSNEis a boolean variable that defines whether to cluster cells using t-SNE method. Default is "TRUE". \itemsaveris a boolean variable that defines whether to revise the gene expression profile in noisy and sparse single-cell RNA-seq data for downstream tSNE analysis using SAVER method. Default is "FALSE". \itemdimensionssets the number of dimensions wanted to be retained in t-SNE step. Default is 3. \itemperplexitysets the perplexity parameter for t-SNE dimension reduction. Default is 30 when number of cells tsne_min_cellsdefines the number of cells in input dataset below which
tsne_min_perplexitysets the perplexity parameter of t-SNE step for small datasets (number of cells var_genesdefines the number of variable genes used by t-SNE analysis, when SEEDsets the seed of the random number generator. Setting the seed to a fixed value can produce reproducible clustering results. |
a matrix of indiviudal clustering results is output, where each row represents the cluster results of each method. This function performs single-cell clustering using four state-of-the-art methods, SC3, CIDR, Seurat and tSNE+kmeans. # Load the example data data_SAFE data("data_SAFE")
# Zheng dataset # Run individual_clustering cluster.result <- individual_clustering(inputTags=data_SAFE$Zheng.expr, SEED=123)
Yuchen Yang, Ruth Huh, Houston Culpepper, Yuan Lin, Michael Love, Yun Li. SAFE (Single-cell Aggregated clustering From Ensemble): Cluster ensemble for single-cell RNA-seq data. 2017 Yuchen Yang <yangyuchensysu@gmail.com>, Ruth Huh <rhuh@live.unc.edu>, Yun Li <yunli@med.unc.edu>
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.