| AF.Echidna | R Documentation | 
Summary of added functions for Echidna
get.es0.file(dat.file=NULL,es.file=NULL,
                        path=NULL,message= FALSE,
                        softp=NULL,
                        faS=NULL,pedS=NULL,Rsuffix=FALSE)
echidna(fixed,random,residual,
                   trait,family,weights, 
                   es0.file,softp,
                   delf,foldN,
                   trace,maxit,
                   Fmv,mu.delete,
                   mulT,met,cycle,
                   batch,mulN,mulp,
                   batch.G,batch.R,
                   subF,subV.org,
                   res.no,dat.file,  
                   run.purrr,selfing,
                   predict,vpredict,qualifier,jobqualf)
## S3 method for class 'esR'
update(
  object,
  trait = NULL,
  fixed = NULL,
  random = NULL,
  residual = NULL,
  predict = NULL,
  vpredict = NULL,
  qualifier = NULL,
  jobqualf = NULL,
  trace = NULL,
  maxit = 30,
  selfing = NULL,
  mu.delete = NULL,
  mulN = NULL,
  mulT = NULL,
  met = NULL,
  cycle = NULL,
  softp = NULL,
  batch = NULL,
  batch.G = NULL,
  batch.R = NULL,
  subF = FALSE,
  subV.org = NULL,
  res.no = NULL,
  dat.file = NULL,
  delf = NULL,
  foldN = NULL,
  ...
)
subF(fixed,random,residual,es0.file,
            subV.org, subV.nL,subV.new,mulN,res.no)
b2s(object)
esRT(path,trace=FALSE,mulT=FALSE,met=FALSE,cycle=FALSE)
raneff.acc(object,ran.eff,Var, ped=NULL)
## S3 method for class 'esR'
predict(object)
## S3 method for class 'esR'
coef(object)
## S3 method for class 'esR'
wald(object)
## S3 method for class 'esR'
waldT(object, term = NULL, ncol = NULL)
## S3 method for class 'esR'
IC(object)
## S3 method for class 'esR'
trace(object)
## S3 method for class 'esR'
converge(object)
dat.file | 
 data file to generate .es file.  | 
es.file | 
 the .es file to generate .es0 file.  | 
path | 
 the path for data files.  | 
message | 
 show running procedure,FALSE(default).  | 
softp | 
 the path for Echidna software.  | 
fixed | 
 fixed effects, such as, c('Rep'), c('Site', 'Site.Rep') or 'Site Site.Rep', h3~1+Rep, etc.  | 
random | 
 random effects, such as,'Mum','Mum Mum.Rep',~Mum+Mum:Rep, etc.  | 
residual | 
 residual effects, such as,'units','ar1(row).ar1(col)',~ar1(row):ar1(col), etc.  | 
trait | 
 aim trait for analysis, such as, 'h3', 'h3 h4',~h3+h4, etc, NULL(default).  | 
family | 
 such as esr_binomial(), esr_poisson().  | 
weights | 
 A variable used as weights in the fit.  | 
es0.file | 
 the .es0 file.  | 
delf | 
 delete all Echidna result files from the folder of .es0 file, TRUE(default).  | 
foldN | 
 new folder name to store each run's results, only works when delf is 'FALSE'.  | 
trace | 
 show iteration procedure,TRUE(default).  | 
maxit | 
 maximum number of iterations, 30(default).  | 
Fmv | 
 make missing values into fixed terms, FALSE(default).  | 
mu.delete | 
 delete term mu or Trait from model, FALSE(default).  | 
mulT | 
 multi-trait model,FALSE(default).  | 
met | 
 multi-environment trial model,FALSE(default).  | 
cycle | 
 Echidna result from qualifier cycle,FALSE(default).  | 
batch | 
 run batch analysis for more than two trait at one time, FALSE(default).  | 
mulN | 
 trait number for multi-trait analysis at one time, 2(default).  | 
mulp | 
 multi-pin formula to run at one time, NULL(default).  | 
batch.G | 
 run more than two G structures at one time, FALSE(default).  | 
batch.R | 
 run more than two R structures at one time, FALSE(default).  | 
subF | 
 run subF function for MET data sets,FALSE(default).  | 
subV.org | 
 original variable for subF.  | 
res.no | 
 number to show results.  | 
run.purrr | 
 using purrr packages for batch analysis,FALSE(default).  | 
selfing | 
 the probability of selfing for parent, such as 0.1.  | 
predict | 
 prediction for model terms.  | 
vpredict | 
 run vpredict statements with Echidna soft.  | 
qualifier | 
 model qualifiers, such as '!extra 5'.  | 
jobqualf | 
 header line qualifiers, mainly '!view'.  | 
object | 
 Echidna result object in R.  | 
This package would supply some functions for Echidna. Details as following:
| Function | Description | 
get.es0.file  | generate .es0 file. | 
echidna  | run mixed models. | 
wald  | output wald results. | 
Var  | output variance components. | 
summary  | output summary results. | 
IC  | output AIC and BIC values. | 
pin  | run pin functions. | 
predict  | output predict results. | 
plot  | output model diagnose results. | 
coef  | output fixed and random effects. | 
update  | update mixed models. | 
b2s  | transform batch esR results to single esR. | 
model.comp  | Model comparison for different mixed models. | 
Yuanzhen Lin <yzhlinscau@163.com>
Yuanzhen Lin. R & ASReml-R Statistics. China Forestry Publishing House. 2016 
Gilmour, A.R. (2020) Echidna Mixed Model Software www.EchidnaMMS.org
## Not run: 
 library(AFEchidna)
 
 ## generate .es0 file
 get.es0.file(dat.file='fm.csv')
 get.es0.file(es.file='fm.es')
 # file.edit('fm.es0')
res<-echidna(trait='h3',
              fixed='Rep',random='Fam',
              residual=NULL,predict=c('Fam'),
              es0.file="fm.es0")
## method 2                           
# res<-echidna(fixed=h3~1+Rep,random=~Fam,
#              residual=NULL,predict=c('Fam'),
#              es0.file="fm.es0")
 names(res)
 class(res)
 # model diagnose
 plot(res) 
 # wald result
 wald(res)
 waldT(res, term=c('mu','Rep'))
 
 # variance components
 Var(res)
 # summary result
 summary(res)
 # AIC,BIC result
 IC(res)
 # fixed and random effects
 coef(res)$fixed
 coef(res)$random
 # predict results if using predict functions
 mm<-predict(res)
 mm$pred
 # show vc results by using vpredict statements
 pin(res)
 # run pin function to count genetic parameters
 pin11(res,h2~V1/(V1+V2))
 pin(res,mulp=c(h2~V1/(V1+V2),h2f~V1/(V1+V2/4)))
 # model converge stage
 trace(res)
 res$Converge
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.