Description Usage Arguments Details Value Examples
View source: R/pretty_model_poisson.R
Wrapper for pretty_model_output(). This function takes a dataset, along with variables names for x (could be multiple), y, and possibly event status, for model fit.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | run_pretty_poisson_model_output(
x_in,
model_data,
y_in,
event_in = NULL,
event_level = NULL,
title_name = NULL,
fail_if_warning = TRUE,
conf_level = 0.95,
overall_p_test_stat = c("Wald", "LR"),
est_digits = 3,
p_digits = 4,
output_type = NULL,
sig_alpha = 0.05,
background = "yellow",
verbose = FALSE,
...
)
|
x_in |
name of x variables in model (can be vector of x names) |
model_data |
data.frame or tibble that contains |
y_in |
name of outcome measure for logistic and linear model, or name of time component in cox model |
event_in |
name of event status variable. Shouled be left NULL for logistic and linear models. If |
event_level |
outcome variable event level for logistic model, and event status level for cox model. |
title_name |
title to use (will be repeated in first column) |
fail_if_warning |
Should program stop and give useful message if there is a warning message when running model (Default is TRUE) |
conf_level |
the confidence level required (default is 0.95). |
overall_p_test_stat |
"Wald" (default) or "LR"; the test.statistic to pass through to the test.statistic param in car::Anova. Ignored for lm fits. |
est_digits |
number of digits to round OR or HR to (default is 3) |
p_digits |
number of digits to round p values (default is 4) |
output_type |
output type, either NULL (default), "latex", or "html" (making special charaters latex friendly) |
sig_alpha |
the defined significance level for highlighting. Default = 0.05 (Only used if output_type not NULL) |
background |
background color of significant values, or no highlighting if NULL. Default is "yellow" (Only used if output_type not NULL) |
verbose |
a logical variable indicating if warnings and messages should be displayed. Default FALSE. |
... |
other params to pass to |
x_in
can be single variable name, or vector of variables to include in the model. All variables must be present in the model_data
dataset.
fail_if_warning
variable default to TRUE because most warnings should be addressed, such as the "Loglik converged before variable XX; beta may be infinite" warning.
A tibble with: Name
(if provided), Variable
, Level
, Est/OR/HR (95% CI)
, P Value
(for categorical variables comparing to reference), Overall P Value
(for categorical variables with 3+ levels), n/n (event)
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | # Basic linear model example
set.seed(542542522)
ybin <- sample(0:1, 100, replace = TRUE)
ybin2 <- sample(c('Male','Female'), 100, replace = TRUE)
ybin3 <- sample(c('Dead','Alive'), 100, replace = TRUE)
y <- rexp(100,.1)
x1 <- factor(sample(LETTERS[1:2],100,replace = TRUE))
x2 <- factor(sample(letters[1:4],100,replace = TRUE))
my_data <- data.frame(y, ybin, ybin2, ybin3, x1, x2)
Hmisc::label(my_data$x1) <- "X1 Variable"
library(dplyr)
# Single runs
run_pretty_model_output(x_in = 'x1', model_data = my_data, y_in = 'y', event_in = 'ybin')
run_pretty_model_output(x_in = 'x1', model_data = my_data, y_in = 'y',
event_in = 'ybin3', event_level = 'Dead')
run_pretty_model_output(x_in = c('x1','x2'), model_data = my_data, y_in = 'y', event_in = 'ybin')
run_pretty_model_output(x_in = 'x2', model_data = my_data, y_in = 'ybin',
event_in = NULL, verbose = TRUE)
run_pretty_model_output(x_in = 'x2', model_data = my_data, y_in = 'y', event_in = NULL)
# Multiple runs for different variables
vars_to_run = c('x1', 'x2')
cox_models <- purrr::map_dfr(vars_to_run, run_pretty_model_output, model_data = my_data,
y_in = 'y', event_in = 'ybin')
kableExtra::kable(cox_models, 'html', caption = 'My Table') %>%
kableExtra::collapse_rows(c(1:2), row_group_label_position = 'stack', headers_to_remove = 1:2)
# Real World Example
data(Bladder_Cancer)
vars_to_run = c('Gender', 'Clinical_Stage_Grouped', 'PT0N0', 'Any_Downstaging')
univariate_output <- purrr::map_dfr(vars_to_run, run_pretty_model_output,
model_data = Bladder_Cancer,
y_in = 'Survival_Months', event_in = 'Vital_Status', event_level = 'Dead')
kableExtra::kable(univariate_output, 'html') %>%
kableExtra::collapse_rows(c(1:2), row_group_label_position = 'stack', headers_to_remove = 1:2)
multivariable_output <- run_pretty_model_output(vars_to_run, model_data = Bladder_Cancer,
y_in = 'Survival_Months', event_in = 'Vital_Status', event_level = 'Dead')
kableExtra::kable(multivariable_output, 'html') %>%
kableExtra::collapse_rows(c(1:2), row_group_label_position = 'stack', headers_to_remove = 1:2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.