R/bipartition.R

Defines functions bipartition

Documented in bipartition

#' @title Bipartition a sample set
#'
#' @description Spectral biparitioning by rank-2 matrix factorization
#'
#' @details
#' Spectral bipartitioning is a popular subroutine in divisive clustering. The sign of the difference between sample loadings in factors of a rank-2 matrix factorization
#' gives a bipartition that is nearly identical to an SVD.
#' 
#' Rank-2 matrix factorization by alternating least squares is faster than rank-2-truncated SVD (i.e. _irlba_).
#'
#' This function is a specialization of rank-2 \code{\link{nmf}} with support for factorization of only a subset of samples, and with additional calculations on the factorization model relevant to bipartitioning. See \code{\link{nmf}} for details regarding rank-2 factorization.
#'
#' @section Advanced Parameters:
#' Several parameters may be specified in the \code{...} argument:
#'
#' * \code{diag = TRUE}: scale factors in \eqn{w} and \eqn{h} to sum to 1 by introducing a diagonal, \eqn{d}. This should generally never be set to \code{FALSE}. Diagonalization enables symmetry of models in factorization of symmetric matrices, convex L1 regularization, and consistent factor scalings.
#' * \code{samples = 1:ncol(A)}: samples to include in bipartition, numbered from 1 to \code{ncol(A)}. Default is all samples.
#' * \code{calc_dist = TRUE}: calculate the relative cosine distance of samples within a cluster to either cluster centroid. If \code{TRUE}, centers for clusters will also be calculated.
#' * \code{seed = NULL}: random seed for model initialization, generally not needed for rank-2 factorizations because robust solutions are recovered when \code{diag = TRUE}
#' * \code{maxit = 100}: maximum number of alternating updates of \eqn{w} and \eqn{h}. Generally, rank-2 factorizations converge quickly and this should not need to be adjusted.
#'
#' @inheritParams nmf
#' @param nonneg enforce non-negativity of the rank-2 factorization used for bipartitioning
#' @return
#' A list giving the bipartition and useful statistics:
#' 	\itemize{
#'    \item v       : vector giving difference between sample loadings between factors in a rank-2 factorization
#'    \item dist    : relative cosine distance of samples within a cluster to centroids of assigned vs. not-assigned cluster
#'    \item size1   : number of samples in first cluster (positive loadings in 'v')
#'    \item size2   : number of samples in second cluster (negative loadings in 'v')
#'    \item samples1: indices of samples in first cluster
#'    \item samples2: indices of samples in second cluster
#'    \item center1 : mean feature loadings across samples in first cluster
#'    \item center2 : mean feature loadings across samples in second cluster
#'  }
#' @importFrom methods is
#' @references
#' 
#' Kuang, D, Park, H. (2013). "Fast rank-2 nonnegative matrix factorization for hierarchical document clustering." Proc. 19th ACM SIGKDD intl. conf. on Knowledge discovery and data mining.
#'
#' @author Zach DeBruine
#' 
#' @export
#' @seealso \code{\link{nmf}}, \code{\link{dclust}}
#' @md
#' @examples
#' \dontrun{
#' library(Matrix)
#' data(iris)
#' A <- as(as.matrix(iris[,1:4]), "dgCMatrix")
#' bipartition(A, calc_dist = TRUE)
#' }
bipartition <- function(data, tol = 1e-5, nonneg = TRUE, ...){

  p <- list(...)
  defaults <- list("diag" = TRUE, "samples" = 1:ncol(data), "seed" = NULL, "calc_dist" = TRUE, "maxit" = 100)
  for(i in 1:length(defaults))
    if(is.null(p[[names(defaults)[[i]]]])) p[[names(defaults)[[i]]]] <- defaults[[i]]

  if (is(data, "sparseMatrix")) {
    data <- as(data, "dgCMatrix")
  } else if (canCoerce(data, "matrix")) {
    data <- as.matrix(data)
  } else stop("'data' was not coercible to a matrix")

    if(!is.numeric(p$seed)) p$seed <- 0
    if(min(p$samples) == 0) stop("sample indices must be strictly positive")
    if(max(p$samples) > ncol(data)) stop("sample indices must be strictly less than the number of columns in 'data'")

    if(class(data)[[1]] == "dgCMatrix"){
        Rcpp_bipartition_sparse(data, tol, p$maxit, nonneg, p$samples - 1, p$seed, getOption("verbose"), p$calc_dist, p$diag)
    } else {
        Rcpp_bipartition_dense(data, tol, p$maxit, nonneg, p$samples - 1, p$seed, getOption("verbose"), p$calc_dist, p$diag)
    }
}
zdebruine/RcppML documentation built on Sept. 13, 2023, 11:44 p.m.