Description Usage Arguments Value Examples
This function implements the statistical method M-HAP for detecting POEs using genotype data from case-control mother-offspring pairs by adjusting for covariates. M-HAP utilizes available information such as Medelian inheritance law, Hardy-Weinberg equilibrium, and conditional independence between offspring genotypes and maternal covariates given maternal genotypes.
1 | MultiLociPOE(Y, gmm, gcc, X, loci, hap, f, ppi)
|
Y |
a |
gmm |
a |
gcc |
a |
X |
a |
loci |
an indicator for the test locus. The possible values could be 1,..., |
hap |
a |
f |
specified disease prevalence. |
ppi |
a |
a list with the following elements
|
estimation and significance test results for the new method M-HAP |
|
estimation and significance test results for the standard logistic regression method |
|
covariance matrix of the estimated parameters by the new method M-HAP |
|
covariance matrix of the estimated parameters by the standard logistic regression method) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## Not run:
data(POESampleData)
Y = POESampleData[,1]
gmm = POESampleData[,2:6]
gcc = POESampleData[,7:11]
X = POESampleData[,12]
loci = 1
f = 0.01
data = MultiLociPOE.input(gmm,gcc,0)
gmm = data$gmm
gcc = data$gcc
hap = data$hap
ppi = data$ppi
fit = MultiLociPOE(Y,gmm,gcc,X,loci,hap,f,ppi)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.