Description Usage Arguments Value Examples
View source: R/kmeans_cluster.R
Perform k-means clustering on a data matrix.
1 | kmeans_cluster(X, center, max.iter = 2500, tol = 1e-08)
|
X |
numeric matrix of data, or an object that can be coerced to such a matrix (such as a numeric vector or a data frame with all numeric columns). |
center |
either the number of clusters, say \(k\), or a set of initial (distinct) cluster centres. If a number, a random center will be assigned. |
max.iter |
the maximum number of iterations allowed. |
tol |
Parameters for determining convergence. |
a list contains centres of each cluster and the labels for each observation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | # One Dimension Example
x1 <- runif(10000,0,1)
x2 <- runif(10000,2,3)
x3 <- runif(10000,4,5)
train_data <- c(x1,x2,x3)
train_label <- c(rep(0,10000),rep(1,10000),rep(2,10000))
training_result <- kmeans_cluster(train_data,3,2500,1e-8)
# Multi Dimension Example
X1 <- runif(10000,0,1)
X2 <- runif(10000,0,1)
X3 <- runif(10000,3,5)
X4 <- runif(10000,3,5)
train_data <- cbind(c(X1,X3),c(X2,X4))
train_label <- c(rep(0,10000),rep(1,10000))
training_result<- kmeans_cluster(train_data,2,2500,1e-8)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.