Description Usage Arguments Value
performs shrinkage estimation and use Extended BIC (EBIC) to select the best tuning parameter in the penalized likelihood from an entire solution path
1 2 3 4 5 6 7 8 9 10 | perform_shrink(
X,
Q_est,
Z_candi,
lambda_vec,
c_ini,
g_ini,
is_sub = 0,
model = "DINA"
)
|
X |
N by J data matrix |
Q_est |
J by K Q after screening by |
Z_candi |
K-column candidate latent attributes (candidates;
|
lambda_vec |
a decreasing sequence of negative penalty parameters |
c_ini |
J initial values of 1-slipping parameters |
g_ini |
J initial values of guessing parameters |
is_sub |
use subsample (1) or not (0; default) - NB: not implemented. |
model |
"DINA" (default) or "DINO" |
A_final final estimated set of latent attribute patterns that made the cut
EBIC_vec vector of EBIC values
size_vec for each tunning parameter, the size of latent attribute patterns that made the cut.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.