Description References See Also Examples
slamR
implements scalable algorithms to fit structured latent attribute
models (SLAM) for high-dimensional binary data observed over a single or multiple
levels of specificity. It works for
1) unknown structural matrix Q,
2) unknown latent attribute set,
3) one ore more levels of binary data (observed over multiple binary or non-binary trees)
4) two-parameter or multi-parameter SLAM models (NB: multi-parameter model under development)
This package partly adapts Matlab programs originally written by Yuqi Gu. Please refer to https://github.com/zhenkewu/slamR for the papers about the model formulation and algorithm
https://github.com/zhenkewu/slamR for the source code
and system/software requirements to use slamR
for your data.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 | # compare DMR with flattened analysis
# Mar 04, 2020
## Not run:
library(slamR)
library(gplots) # heatmap.2
rm(list=ls())
production_dir <- "/Users/zhenkewu/Dropbox/OptumInsight\ Data\ and\ Restricted\
Latent\ Class\ Model/DMR_R_code/"
N <- 15000 # sample size.
err_prob <- 0.2 # noise level.
# shrinkage algorithm parameters:
thres_c <- 0.01 # used in the E step (modified EM for log-type penalized likelihood).
thres <- 0.5/N # for thresholding at the end of the modified EM algoritm or
# general fractional power (equivalent formulation of pen-likelihood)
# variational (E step for attributes use Dirichlet variational family) EM.
C1 <- 3 # level 1 # of latent attribute patterns.
# Simulation settings:
A_set1 <- rbind(c(0,0,1),c(1,1,0),c(1,1,1))
Q1_small <- rbind(diag(1,3),c(1,1,0),c(0,0,1))
t(get_ideal_resp(Q1_small,A_set1))
Q1 <- do.call("rbind", rep(list(Q1_small), 20))
J1 <- nrow(Q1) # level 1 dimension, J1 (here = 200)
K1 <- ncol(Q1)
# level 2 structural matrix:
Q2 <- vector("list",3)
Q2[[1]] <- do.call("rbind", rep(list(rbind(diag(1,2),c(1,0),c(0,1),c(1,1))), 200))
Q2[[2]] <- do.call("rbind", rep(list(rbind(diag(1,2),c(1,0),c(1,1),c(1,1))), 200))
Q2[[3]] <- do.call("rbind", rep(list(rbind(diag(1,2),c(0,1),c(1,1),c(1,1))), 200))
J2 <- nrow(Q2[[1]])
K2 <- ncol(Q2[[1]]) # here we use identical K2 in the simulation, though need not be.
# specify the taxonomy via D_mat
D_mat <- matrix(0,J1,J2)
J_ratio <- J2/J1
for (j1 in 1:J1){
D_mat[j1,((j1-1)*J_ratio+1):(j1*J_ratio)] <- 1
}
heatmap.2(D_mat,dendrogram='none', Rowv=FALSE, Colv=FALSE,trace='none')
# model parameters:
p1 <- c(0.5,0.3,0.2) # in paper c(0.3,0.2,0.5)
p2 <- vector("list",C1)
# design 1:
A_set2 <- vector("list",C1)
A_set2[[1]] <- rbind(c(0,0),c(0,1),c(1,0),c(1,1))
A_set2[[2]] <- rbind(c(0,0),c(0,1),c(1,1))
A_set2[[3]] <- rbind(c(0,0),c(1,0),c(1,1))
p2[[1]] <- c(0.3,0.2,0.3,0.2)
p2[[2]] <- c(0.4,0.2,0.4)
p2[[3]] <- c(0.3,0.3,0.4)
c1 <- rep((1-err_prob),J1)
g1 <- rep(err_prob,J1)
# let the probabilities of different classes in the first
# level to have different item parameters at level 2:
c2 <- vector("list",C1)
for (cc in 1:C1){
c2[[cc]] <- rep(1-err_prob,J2)
}
g2 <- vector("list",C1)
for (cc in 1:C1){
g2[[cc]] <- rep(err_prob,J2)
}
make_list(N,J1,J2,K1,K2)
#
# generate data
#
# level 1: coarser level
set.seed(0513)
res <- generate_X_fromA(N,A_set1,p1,Q1,c1,g1)
X1 <- res$X
Z1 <- res$Z
X_true1 <- res$X_true
rm("res")
# level 2: finer level
X2 <- matrix(0,nrow=N,ncol=J2)
Z2 <- matrix(0,nrow=N,ncol=K2)
for (cc in 1:C1){
ind_cc <- which(bin2ind(Z1)==bin2ind(A_set1[cc,]))
set.seed(0513)
res <- generate_X_tax2(X1[ind_cc,,drop=FALSE],
A_set2[[cc]],
D_mat,
p2[[cc]], Q2[[cc]],c2[[cc]],g2[[cc]])
X2[ind_cc,] <- res$X2
Z2[ind_cc,] <- res$Z
}
rm("res")
# model fitting:
# stage 1 fitting:
set.seed(0513)
res <- get_initial_s(N,Q1,Z1)
Q_ini1 <- res$Q_ini
Z_ini1 <- res$Z_ini
max_iter <- 50
# This is only for tunning:
#X=X1;Z_ini=Z_ini1;Q_ini=Q_ini1;max_iter=50
time1 <- Sys.time()
res <- adg_em(X1,Z_ini1,Q_ini1,max_iter,err_prob)
Sys.time()-time1
Q_est <- res$Q_arr[[length(res$Q_arr)]] # still may not identically recover Q?
Z_est <- res$Z_est
Z_candi <- res$Z_candi
rm(res)
check_complete(Q_est)
# if not complete force to be complete.
if (check_complete(Q_est)$is_complete==0){
Q_est[1:K1,] <- diag(1,K1)
}
# ZW: does thia matter for estimating Q by forcing completeness?
## checking:
cat("==look at estimated Q\n==")
sum(sum(abs(get_ideal_resp(Q1,A_set1)-get_ideal_resp(Q_est,A_set1))>0))
cat("==look at initial Q\n==")
sum(sum(abs(get_ideal_resp(Q1,A_set1)-get_ideal_resp(Q_ini1,A_set1))>0))
#estimated unique latent attribute profiles:
unique(Z_est)
table(bin2ind(Z_est)) # this is the candidates after screening; input for shrinkage.
## end of checking
# shrinkage estimation at coarser level (level 1):
c_ini1 <- c1
g_ini1 <- g1
lambda_vec <- seq(-0.2,-4.2,by=-0.4) # grid of lambda values in pen-likelihood formulation.
res <- perform_shrink(X1, Q_est, Z_candi,
lambda_vec, c_ini1, g_ini1, 0)
A_final1 <- res$A_final
rm(res)
res <- get_em_classify(X1,Q_est,A_final1,err_prob)
Z_shrink1 <- res$Z_shrink
pattern1 <- A_final1
profile1 <- res$Z_shrink
Q1_est <- Q_est
# end: 1st coarser fitting <---------------------------- end of first level fitting.
#
# begin 2nd finer resolution fitting:
#
table(bin2ind(Z1)) # true profiles.
table(bin2ind(Z_shrink1)) # estimated. identical? this is excellent!
C1_hat <- nrow(A_final1)
pattern2_est <- vector("list",C1_hat)
profile2_est <- vector("list",C1_hat)
Q2_est <- vector("list",C1_hat)
Z_ini2 <- matrix(0,nrow=N,ncol=K2)
Z_shrink2 <- matrix(0,nrow=N,ncol=K2) # currently we are assuming the same K2.
must_maxiter <- 0
set.seed(0513)
for (cc in 1:C1_hat){
ind_cc_est <- apply(Z_shrink1,1,function(v) all(v==A_final1[cc,]))
X2_cc <- X2[ind_cc_est,,drop=FALSE]
X1_cc <- X1[ind_cc_est,,drop=FALSE]
#res <- get_initial_n(sum(ind_cc_est),Q2[[cc]],Z2[ind_cc_est,,drop=FALSE])
# function not programmed.
# caveat: the cc here may not match with the cc in the orginal simulation
# A_final1 rows may be ordered differently than A_set1. Need to match!
# in matlab - unique automatically order by row; A_set1 is ordered by row.
#initialization matters: if using wrong Q2, Z2, might have problems:
# the final Z_est might not be in Z_ini, for example.
res <- get_initial_n(sum(ind_cc_est),Q2[[cc]],Z2[ind_cc_est,,drop=FALSE])
Q_ini_t <- res$Q_ini
Z_ini_t <- res$Z_ini
max_iter <- 50
res <- adg_em(X2_cc,Z_ini_t,Q_ini_t,
max_iter,err_prob,must_maxiter,D_mat,X1_cc)
Z_est <- res$Z_est
Z_candi <- res$Z_candi
Q_arr <- res$Q_arr
Q_est <- Q_arr[[length(Q_arr)]]
check_complete(Q_est)
if (check_complete(Q_est)$is_complete==0){
Q_est[1:K2,] <- diag(1,K2)
}
Q2_est[[cc]] <- Q_est
## some checks:
table(bin2ind(Z_ini_t))
unique(Z_est)
table(bin2ind(Z_est))
ind_cc <- apply(Z1,1,function(v) all(v==A_set1[cc,]))
table(bin2ind(Z2[ind_cc,]))
## check end.
# no shrinkage: after screening the latent attributes are estimated well.
A_final <- Z_candi
# but in level 1, we used PEM to choose A, plain EM for EBIC.
table(bin2ind(Z2[ind_cc,]))
table(bin2ind(Z_est))
pattern2_est[[cc]] <- A_final
profile2_est[[cc]] <- Z_est
Z_ini2[ind_cc_est,] <- Z_ini_t
Z_shrink2[ind_cc_est,] <- Z_est
}
#
# NEXT: look at estimation results.
#
sum(abs(profile1-Z1),1)
image(f(profile1-Z1))
par(mfrow=c(1,2))
image(f(Z_ini2-Z2))
image(f(Z_shrink2-Z2))
# combine
par(mfrow=c(1,2))
image(f(cbind(Z_ini1,Z_ini2)-cbind(Z1,Z2)))
image(f(cbind(profile1,Z_shrink2)-cbind(Z1,Z2)))
#combine results from doubly-multireolution clustering
sum(abs(cbind(profile1,Z_shrink2)-cbind(Z1,Z2)))
Z_multi_res <- cbind(profile1,Z_shrink2)
for (cc in 1:C1){
ind_cc <- apply(Z1,1,function(v) all(v==A_set1[cc,]))
print(table(bin2ind(Z2[ind_cc,])))
print(table(bin2ind(profile2_est[[cc]])))
}
ind_cc_arr <- vector("list",C1)
png(file.path(production_dir,"data_level2.png"))
par(mfrow=c(1,3))
for (cc in 1:C1){
ind_cc_arr[[cc]] <- apply(Z1,1,function(v) all(v==A_set1[cc,]))
image(f(X2[ind_cc_arr[[cc]],]))
}
dev.off()
# check tree constraint:
all(all(X2 <= X1 %*% D_mat))
#look at clustering at the 1st level:
png(file.path(production_dir,"clustering_level1.png"))
par(mfrow=c(1,2))
image(f(Z_ini1-Z1),main="pattern_ini-pattern_true")
image(f(Z_shrink1-Z1),main="pattern_est-pattern_true")
dev.off()
# second level clustering:
png(file.path(production_dir,"clustering_level2.png"))
par(mfrow=c(C1,2))
for (cc in 1:C1){
image(f(Z_ini2[ind_cc_arr[[cc]],]-Z2[ind_cc_arr[[cc]],]),
main=paste0(paste(A_set1[cc,],collapse = ""),"; FINER 2: pattern_ini-pattern_true"))
image(f(Z_shrink2[ind_cc_arr[[cc]], ]-Z2[ind_cc_arr[[cc]], ]),
main=paste0(paste(A_set1[cc,],collapse = ""),"; FINER 2: pattern_est-pattern_true"))
}
dev.off()
#
# for flattened pattersn:
#
Z_flat <- cbind(Z1,Z2)
A_set_flat <- unique_sort_binmat(Z_flat)
table(bin2ind(Z_flat))
A_set_all <- unique_sort_binmat(Z_flat)
#### fitting begins:
## fitting flattened model
set.seed(0513)
# get initial values:
res <- get_initial_n(N,Q1,Z1)
Q_ini1 <- res$Q_ini
Z_ini1 <- res$Z_ini
res <- get_initial_n(N,Q2[[1]],Z2)
Q_ini2 <- res$Q_ini
Z_ini2 <- res$Z_ini
K_flat <- K1+K2
Z_flat_ini <- cbind(Z_ini1,Z_ini2)
# try different initialization for Q_flat:
Q_flat_ini <- rbind(cbind(Q_ini1,matrix(runif(J1*K2)<0.5,nrow=J1,ncol=K2)),
cbind(matrix(runif(J1*K2)<0.5,nrow=J2,ncol=K1),Q_ini2))
## begin real fitting:
set.seed(0513)
# one-stage shrinkage of flattened data
X <- cbind(X1,X2)
mat_iter <- 50
time1 <- Sys.time()
res <- adg_em(X, Z_flat_ini, Q_flat_ini, max_iter, err_prob) # currently slow.
Sys.time()-time1
Z_est <- res$Z_est
Z_candi <- res$Z_candi
Q_arr <- res$Q_arr
Q_est <- Q_arr[[length(Q_arr)]]
check_complete(Q_est)
unique_sort_binmat(Z_est)
table(bin2ind(Z_est))
# check if screened patterns include the true flattened patterns.
# check_pattern(A_set_flat,Z_candi)
# look at clustering
png(file.path(production_dir,"clustering_level2_flattened.png"))
par(mfrow=c(1,3))
image(f(Z_flat_ini),main="pattern_ini")
image(f(Z_est),main="pattern_est")
image(f(cbind(Z1,Z2)),main="pattern_true")
dev.off()
# difference
png(file.path(production_dir,"difference_from_truth.png"))
par(mfrow=c(1,3))
image(f(Z_flat_ini-cbind(Z1,Z2)),main="initial-true")
image(f(Z_est-cbind(Z1,Z2)),main="FLAT: est-true")
image(f(Z_multi_res-cbind(Z1,Z2)),main="MULTI: est-true")
dev.off()
# # look at Q
# png(file.path(production_dir,"Q_flat.png"))
# par(mfrow=c(C1,3))
# image(f(Q_flat_ini),main="Q flat ini")
# image(f(Q_est),main="FLAT: est")
# image(f(rbind(cbind(Q1,matrix(0,J1,K2)),
# cbind(matrix(0,J2,K1),Q2[[1]]))),main="MULTI: truth") # <-- change to same Q20
# dev.off()
save.image(file.path(production_dir,"example.RDATA"))
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.