slamR: slamR: *s*tructured *l*atent *a*ttribute *m*odels in*R*

Description References See Also Examples

Description

slamR implements scalable algorithms to fit structured latent attribute models (SLAM) for high-dimensional binary data observed over a single or multiple levels of specificity. It works for

References

See Also

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
# compare DMR with flattened analysis
# Mar 04, 2020

## Not run: 
  library(slamR)
  library(gplots) # heatmap.2
  rm(list=ls())

  production_dir <- "/Users/zhenkewu/Dropbox/OptumInsight\ Data\ and\ Restricted\
Latent\ Class\ Model/DMR_R_code/"

  N <- 15000 # sample size.
  err_prob <- 0.2 # noise level.

  # shrinkage algorithm parameters:
  thres_c <- 0.01  # used in the E step (modified EM for log-type penalized likelihood).
  thres   <- 0.5/N # for thresholding at the end of the modified EM algoritm or
  # general fractional power (equivalent formulation of pen-likelihood)
  # variational (E step for attributes use Dirichlet variational family) EM.

  C1 <- 3 # level 1 # of latent attribute patterns.


  # Simulation settings:
  A_set1   <- rbind(c(0,0,1),c(1,1,0),c(1,1,1))
  Q1_small <- rbind(diag(1,3),c(1,1,0),c(0,0,1))

  t(get_ideal_resp(Q1_small,A_set1))

  Q1 <- do.call("rbind", rep(list(Q1_small), 20))

  J1 <- nrow(Q1) # level 1 dimension, J1 (here = 200)
  K1 <- ncol(Q1)

  # level 2 structural matrix:
  Q2 <- vector("list",3)
  Q2[[1]] <- do.call("rbind", rep(list(rbind(diag(1,2),c(1,0),c(0,1),c(1,1))), 200))
  Q2[[2]] <- do.call("rbind", rep(list(rbind(diag(1,2),c(1,0),c(1,1),c(1,1))), 200))
  Q2[[3]] <- do.call("rbind", rep(list(rbind(diag(1,2),c(0,1),c(1,1),c(1,1))), 200))

  J2 <- nrow(Q2[[1]])
  K2 <- ncol(Q2[[1]]) # here we use identical K2 in the simulation, though need not be.


  # specify the taxonomy via D_mat
  D_mat <- matrix(0,J1,J2)
  J_ratio <- J2/J1
  for (j1 in 1:J1){
    D_mat[j1,((j1-1)*J_ratio+1):(j1*J_ratio)] <- 1
  }

  heatmap.2(D_mat,dendrogram='none', Rowv=FALSE, Colv=FALSE,trace='none')

  # model parameters:
  p1 <- c(0.5,0.3,0.2) # in paper c(0.3,0.2,0.5)
  p2 <- vector("list",C1)

  # design 1:
  A_set2 <- vector("list",C1)
  A_set2[[1]] <- rbind(c(0,0),c(0,1),c(1,0),c(1,1))
  A_set2[[2]] <- rbind(c(0,0),c(0,1),c(1,1))
  A_set2[[3]] <- rbind(c(0,0),c(1,0),c(1,1))

  p2[[1]] <- c(0.3,0.2,0.3,0.2)
  p2[[2]] <- c(0.4,0.2,0.4)
  p2[[3]] <- c(0.3,0.3,0.4)

  c1 <- rep((1-err_prob),J1)
  g1 <- rep(err_prob,J1)

  # let the probabilities of different classes in the first
  # level to have different item parameters at level 2:
  c2 <- vector("list",C1)
  for (cc in 1:C1){
    c2[[cc]] <- rep(1-err_prob,J2)
  }
  g2 <- vector("list",C1)
  for (cc in 1:C1){
    g2[[cc]] <- rep(err_prob,J2)
  }

  make_list(N,J1,J2,K1,K2)

  #
  # generate data
  #

  # level 1: coarser level
  set.seed(0513)
  res <- generate_X_fromA(N,A_set1,p1,Q1,c1,g1)
  X1 <- res$X
  Z1 <- res$Z
  X_true1 <- res$X_true
  rm("res")

  # level 2: finer level
  X2 <- matrix(0,nrow=N,ncol=J2)
  Z2 <- matrix(0,nrow=N,ncol=K2)

  for (cc in 1:C1){
    ind_cc <- which(bin2ind(Z1)==bin2ind(A_set1[cc,]))
    set.seed(0513)
    res <- generate_X_tax2(X1[ind_cc,,drop=FALSE],
                           A_set2[[cc]],
                           D_mat,
                           p2[[cc]], Q2[[cc]],c2[[cc]],g2[[cc]])

    X2[ind_cc,] <- res$X2
    Z2[ind_cc,] <- res$Z
  }

  rm("res")
  # model fitting:

  # stage 1 fitting:
  set.seed(0513)
  res <- get_initial_s(N,Q1,Z1)
  Q_ini1 <- res$Q_ini
  Z_ini1 <- res$Z_ini

  max_iter <- 50


  # This is only for tunning:
  #X=X1;Z_ini=Z_ini1;Q_ini=Q_ini1;max_iter=50
  time1 <- Sys.time()
  res <- adg_em(X1,Z_ini1,Q_ini1,max_iter,err_prob)
  Sys.time()-time1

  Q_est <- res$Q_arr[[length(res$Q_arr)]] # still may not identically recover Q?
  Z_est <- res$Z_est
  Z_candi <- res$Z_candi
  rm(res)

  check_complete(Q_est)
  # if not complete force to be complete.
  if (check_complete(Q_est)$is_complete==0){
    Q_est[1:K1,] <- diag(1,K1)
  }
  # ZW: does thia matter for estimating Q by forcing completeness?


  ## checking:
  cat("==look at estimated Q\n==")
  sum(sum(abs(get_ideal_resp(Q1,A_set1)-get_ideal_resp(Q_est,A_set1))>0))

  cat("==look at initial Q\n==")
  sum(sum(abs(get_ideal_resp(Q1,A_set1)-get_ideal_resp(Q_ini1,A_set1))>0))

  #estimated unique latent attribute profiles:
  unique(Z_est)
  table(bin2ind(Z_est)) # this is the candidates after screening; input for shrinkage.
  ## end of checking

  # shrinkage estimation at coarser level (level 1):
  c_ini1 <- c1
  g_ini1 <- g1

  lambda_vec <- seq(-0.2,-4.2,by=-0.4) # grid of lambda values in pen-likelihood formulation.

  res <- perform_shrink(X1, Q_est, Z_candi,
                        lambda_vec, c_ini1, g_ini1, 0)

  A_final1 <- res$A_final

  rm(res)

  res <- get_em_classify(X1,Q_est,A_final1,err_prob)
  Z_shrink1 <- res$Z_shrink


  pattern1 <- A_final1
  profile1 <- res$Z_shrink
  Q1_est   <- Q_est

  # end: 1st coarser fitting <---------------------------- end of first level fitting.

  #
  # begin 2nd finer resolution fitting:
  #
  table(bin2ind(Z1))        # true profiles.
  table(bin2ind(Z_shrink1)) # estimated. identical? this is excellent!

  C1_hat <- nrow(A_final1)
  pattern2_est <- vector("list",C1_hat)
  profile2_est <- vector("list",C1_hat)
  Q2_est       <- vector("list",C1_hat)

  Z_ini2 <- matrix(0,nrow=N,ncol=K2)
  Z_shrink2 <- matrix(0,nrow=N,ncol=K2) # currently we are assuming the same K2.


  must_maxiter <- 0
  set.seed(0513)

  for (cc in 1:C1_hat){
    ind_cc_est <- apply(Z_shrink1,1,function(v) all(v==A_final1[cc,]))
    X2_cc <- X2[ind_cc_est,,drop=FALSE]
    X1_cc <- X1[ind_cc_est,,drop=FALSE]

    #res <- get_initial_n(sum(ind_cc_est),Q2[[cc]],Z2[ind_cc_est,,drop=FALSE])
    # function not programmed.
    # caveat: the cc here may not match with the cc in the orginal simulation
    # A_final1 rows may be ordered differently than A_set1. Need to match!
    # in matlab - unique automatically order by row; A_set1 is ordered by row.



    #initialization matters: if using wrong Q2, Z2, might have problems:
    # the final Z_est might not be in Z_ini, for example.
    res <- get_initial_n(sum(ind_cc_est),Q2[[cc]],Z2[ind_cc_est,,drop=FALSE])
    Q_ini_t <- res$Q_ini
    Z_ini_t <- res$Z_ini

    max_iter <- 50

    res <- adg_em(X2_cc,Z_ini_t,Q_ini_t,
                  max_iter,err_prob,must_maxiter,D_mat,X1_cc)

    Z_est <- res$Z_est
    Z_candi <- res$Z_candi
    Q_arr   <- res$Q_arr

    Q_est <- Q_arr[[length(Q_arr)]]
    check_complete(Q_est)

    if (check_complete(Q_est)$is_complete==0){
      Q_est[1:K2,] <- diag(1,K2)
    }

    Q2_est[[cc]] <- Q_est


    ## some checks:
    table(bin2ind(Z_ini_t))

    unique(Z_est)
    table(bin2ind(Z_est))

    ind_cc <- apply(Z1,1,function(v) all(v==A_set1[cc,]))
    table(bin2ind(Z2[ind_cc,]))
    ## check end.

    # no shrinkage: after screening the latent attributes are estimated well.
    A_final <- Z_candi
    # but in level 1, we used PEM to choose A, plain EM for EBIC.

    table(bin2ind(Z2[ind_cc,]))
    table(bin2ind(Z_est))

    pattern2_est[[cc]] <- A_final
    profile2_est[[cc]] <- Z_est

    Z_ini2[ind_cc_est,] <- Z_ini_t
    Z_shrink2[ind_cc_est,] <- Z_est
  }


  #
  # NEXT: look at estimation results.
  #


  sum(abs(profile1-Z1),1)

  image(f(profile1-Z1))

  par(mfrow=c(1,2))
  image(f(Z_ini2-Z2))
  image(f(Z_shrink2-Z2))

  # combine
  par(mfrow=c(1,2))
  image(f(cbind(Z_ini1,Z_ini2)-cbind(Z1,Z2)))
  image(f(cbind(profile1,Z_shrink2)-cbind(Z1,Z2)))

  #combine results from doubly-multireolution clustering
  sum(abs(cbind(profile1,Z_shrink2)-cbind(Z1,Z2)))
  Z_multi_res <- cbind(profile1,Z_shrink2)

  for (cc in 1:C1){
    ind_cc <- apply(Z1,1,function(v) all(v==A_set1[cc,]))

    print(table(bin2ind(Z2[ind_cc,])))
    print(table(bin2ind(profile2_est[[cc]])))
  }


  ind_cc_arr <- vector("list",C1)
  png(file.path(production_dir,"data_level2.png"))
  par(mfrow=c(1,3))
  for (cc in 1:C1){
    ind_cc_arr[[cc]] <- apply(Z1,1,function(v) all(v==A_set1[cc,]))
    image(f(X2[ind_cc_arr[[cc]],]))
  }
  dev.off()

  # check tree constraint:
  all(all(X2 <= X1 %*% D_mat))

  #look at clustering at the 1st level:

  png(file.path(production_dir,"clustering_level1.png"))
  par(mfrow=c(1,2))
  image(f(Z_ini1-Z1),main="pattern_ini-pattern_true")
  image(f(Z_shrink1-Z1),main="pattern_est-pattern_true")
  dev.off()

  # second level clustering:
  png(file.path(production_dir,"clustering_level2.png"))
  par(mfrow=c(C1,2))
  for (cc in 1:C1){
    image(f(Z_ini2[ind_cc_arr[[cc]],]-Z2[ind_cc_arr[[cc]],]),
          main=paste0(paste(A_set1[cc,],collapse = ""),"; FINER 2: pattern_ini-pattern_true"))
    image(f(Z_shrink2[ind_cc_arr[[cc]], ]-Z2[ind_cc_arr[[cc]], ]),
          main=paste0(paste(A_set1[cc,],collapse = ""),"; FINER 2: pattern_est-pattern_true"))
  }
  dev.off()

  #
  # for flattened pattersn:
  #
  Z_flat <- cbind(Z1,Z2)
  A_set_flat <- unique_sort_binmat(Z_flat)


  table(bin2ind(Z_flat))
  A_set_all <- unique_sort_binmat(Z_flat)

  #### fitting begins:
  ## fitting flattened model
  set.seed(0513)

  # get initial values:
  res <- get_initial_n(N,Q1,Z1)
  Q_ini1 <- res$Q_ini
  Z_ini1 <- res$Z_ini

  res <- get_initial_n(N,Q2[[1]],Z2)
  Q_ini2 <- res$Q_ini
  Z_ini2 <- res$Z_ini

  K_flat <- K1+K2

  Z_flat_ini <- cbind(Z_ini1,Z_ini2)

  # try different initialization for Q_flat:
  Q_flat_ini <- rbind(cbind(Q_ini1,matrix(runif(J1*K2)<0.5,nrow=J1,ncol=K2)),
                      cbind(matrix(runif(J1*K2)<0.5,nrow=J2,ncol=K1),Q_ini2))

  ## begin real fitting:
  set.seed(0513)
  # one-stage shrinkage of flattened data
  X <- cbind(X1,X2)

  mat_iter <- 50
  time1 <- Sys.time()
  res <- adg_em(X, Z_flat_ini, Q_flat_ini, max_iter, err_prob) # currently slow.
  Sys.time()-time1

  Z_est <- res$Z_est
  Z_candi <- res$Z_candi
  Q_arr   <- res$Q_arr

  Q_est <- Q_arr[[length(Q_arr)]]

  check_complete(Q_est)

  unique_sort_binmat(Z_est)
  table(bin2ind(Z_est))

  # check if screened patterns include the true flattened patterns.
  # check_pattern(A_set_flat,Z_candi)

  # look at clustering
  png(file.path(production_dir,"clustering_level2_flattened.png"))
  par(mfrow=c(1,3))
  image(f(Z_flat_ini),main="pattern_ini")
  image(f(Z_est),main="pattern_est")
  image(f(cbind(Z1,Z2)),main="pattern_true")
  dev.off()

  # difference
  png(file.path(production_dir,"difference_from_truth.png"))
  par(mfrow=c(1,3))
  image(f(Z_flat_ini-cbind(Z1,Z2)),main="initial-true")
  image(f(Z_est-cbind(Z1,Z2)),main="FLAT: est-true")
  image(f(Z_multi_res-cbind(Z1,Z2)),main="MULTI: est-true")
  dev.off()

  # # look at Q
  # png(file.path(production_dir,"Q_flat.png"))
  # par(mfrow=c(C1,3))
  # image(f(Q_flat_ini),main="Q flat ini")
  # image(f(Q_est),main="FLAT: est")
  # image(f(rbind(cbind(Q1,matrix(0,J1,K2)),
  #               cbind(matrix(0,J2,K1),Q2[[1]]))),main="MULTI: truth") # <-- change to same Q20
  # dev.off()

  save.image(file.path(production_dir,"example.RDATA"))


## End(Not run)

zhenkewu/slamR documentation built on March 8, 2020, 1:31 a.m.