getIDEr | R Documentation |
Calculate the similarity matrix based on the metrics of Inter-group Differential ExpRession (IDER) with the selected batch effects regressed out.
getIDEr(
seu,
group.by.var = "initial_cluster",
batch.by.var = "Batch",
verbose = TRUE,
use.parallel = FALSE,
n.cores = 1,
downsampling.size = 40,
downsampling.include = TRUE,
downsampling.replace = TRUE
)
seu |
Seurat S4 object with the column of 'initial_cluster' in its meta.data. Required. |
group.by.var |
initial clusters (batch-specific groups) variable. Needs to be one of the 'colnames(seu@meta.data)'. Default: "initial_cluster". |
batch.by.var |
Batch variable. Needs to be one of the 'colnames(seu@meta.data)'. Default: "Batch". |
verbose |
Boolean. Print the message and progress bar. (Default: TRUE) |
use.parallel |
Boolean. Use parallel computation, which requires doParallel; no progress bar will be printed out. Run time will be 1/n.cores compared to the situation when no parallelisation is used. (Default: FALSE) |
n.cores |
Numeric. Number of cores used for parallel computing (default: 1). |
downsampling.size |
Numeric. The number of cells representing each group. (Default: 40) |
downsampling.include |
Boolean. Using 'include = TRUE' to include the group smaller than required size. (Default: FALSE) |
downsampling.replace |
Boolean. Using 'replace = TRUE' if the group is smaller than required size and some cells will be repeatedly used. (Default: FALSE) |
A list of four objects: a similarity matrix, a numeric vector recording cells used and the data frame of combinations included.
plotNetwork
finalClustering
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.