#' @title plotSimilarityCorr
#'
#' @description
#' This function plots the correlation between a given similarity measure.
#'
#' @param dataframe Dataframe that contains the similarity measures you want to plot.
#' @param measures Vector(s) in dataframe that contains the similarity measures you want to plot.
#' @param labels Character vector of labels for plot.
#'
#' @return The figure will appear in your plot window.
#'
#' @author Jeffrey Ziegler (<jeffrey.ziegler[at]emory.edu>)
#' @examples
#'
#' plotSimilarityCorr(dataframe=replication_complete.cases, measures=c("jaccardDist", "cosineDist"))
#'
#' @rdname plotSimilarityCorr
#' @seealso \code{\link{similarityMeasures}} \code{\link{plotSimilarity}}
#' @export
plotSimilarityCorr <- function(dataframe, measures, labels){
# subset to similarity measures in dataframe
corrPlotData <- dataframe[, measures]
# rename columns for plot
names(corrPlotData) <- labels
# execute correlation plot
ggcorrplot(round(cor(corrPlotData, use="complete.obs"), 2), hc.order = T,
type = "lower", lab = T, lab_size=5, outline.col = "black",
method="square", legend.title = "Correlation",
ggtheme = ggplot2::theme_classic, colors = c("grey90", "grey0", "grey90")) +
labs(y='', x="", color="Correlation") +
theme(legend.position=c(.2, .8), legend.title=element_text(size=16),
legend.text=element_text(size=14), axis.text.y = element_text(size=18),
axis.text.x = element_text(size=18, angle = 25, hjust = 1))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.