#==============================================================================
# North Central Appalachians
#==============================================================================
#'NCA: Standarize Taxonomic Resolution
#'
#'@param Long = Taxonomic data in long format
#'@return Removes and adjusts taxonomic resolution to make data sets from
#'multiple sources comparable.
#'@export
nca_clean_taxa <- function(Long){
Long <- Long[!Long$TSN %in% Chessie::exclusions_2011$TSN, ]
phy <- wide(Long, "PHYLUM")
nemertea <- if("NEMERTEA" %in% names(phy)){
(phy$NEMERTEA / rowSums(phy[,6:ncol(phy)])) * 100
}else{
0
}
cat("Nemertea were excluded from the data.\
The maximum percentage of Nemertea found in a sample was",
round(max(nemertea ), 2),"%.")
subphy <- wide(Long, "SUBPHYLUM")
mites <- if("CHELICERATA" %in% names(subphy)){
(subphy$CHELICERATA / rowSums(subphy[,6:ncol(subphy)])) * 100
}else{
0
}
cat("Mites were excluded from the data.\
The maximum percentage of Mites found in a sample was", round(max(mites), 2),"%.")
phy_spp <- c("PHYLUM", "SUBPHYLUM", "CLASS", "SUBCLASS", "ORDER", "SUBORDER",
"FAMILY", "SUBFAMILY", "TRIBE", "GENUS", "SPECIES")
Long[Long$PHYLUM %in% c("NEMERTEA"), phy_spp] <- "UNIDENTIFIED"
Long[Long$SUBPHYLUM %in% c("CHELICERATA"), phy_spp] <- "UNIDENTIFIED"
subclass_spp <- c("SUBCLASS", "ORDER", "SUBORDER", "FAMILY",
"SUBFAMILY", "TRIBE", "GENUS", "SPECIES")
#Long[Long$CLASS %in% c("OLIGOCHAETA", "HIRUDINEA"), subclass_spp] <- "UNIDENTIFIED"
Long[Long$CLASS %in% "OLIGOCHAETA", subclass_spp] <- Long[Long$CLASS %in% "OLIGOCHAETA", "CLASS"]
Long[Long$CLASS %in% "HIRUDINEA", subclass_spp] <- Long[Long$CLASS %in% "HIRUDINEA", "CLASS"]
fam_spp <- c("SUBFAMILY", "TRIBE", "GENUS", "SPECIES")
Long[Long$CLASS %in% c("GASTROPODA"), fam_spp] <- Long[Long$CLASS %in% c("GASTROPODA"), "FAMILY"]
Long[Long$FAMILY %in% c("CHIRONOMIDAE"), fam_spp] <- "CHIRONOMIDAE"
return(Long)
}
#==============================================================================
#'NCA Data PREP
#'
#'@param Long = Taxonomic data in long format
#'@return Subset the data to only sites in the NCA bioregion with a
#'Strahler Stream order <= 4.
#'@export
prep_nca <- function(Long) {
sub.nca <- subset(Long, Long$ECOREGION_LEVEL_4 %in% c("62a", "62A", "62b",
"62B", "62c", "62C",
"62d", "62D"))
sub.method <- prep_subset(sub.nca)
agg.nca <- bioregion_agg(sub.method)
final.df <- agg.nca
#final.df <- nca_clean_taxa(agg.nca)
return(final.df)
}
#==============================================================================
#'NCA metrics
#'
#'@param Info = Taxonomic Information
#'@param Long = Taxonomic data in long format
#'@param tol_col = Specify Tolerance value column.
#'@param ffg_col = Specify Funtional Feeding Group column.
#'@return 2011 Chessie BIBI metrics for the north central Appalachians (NCA) ecoregion
#'@export
metrics_nca <- function(master, Long, tol_col, ffg_col) {
Long <- Long[!Long$TSN %in% Chessie::exclusions_2011$TSN, ]
#============================================================================
# These should be used for taxa attribute related metrics
taxa <- c("PHYLUM", "SUBPHYLUM", "CLASS",
"SUBCLASS", "ORDER", "SUBORDER",
"FAMILY", "SUBFAMILY", "TRIBE",
"GENUS", "SPECIES")
#master2 <- fill_taxa(master)
#master.fill <- unique(master2[, c("TSN_R", taxa)])
#test <- (master.fill[duplicated(master.fill$TSN_R), ])
long.fill <- Long
#long.fill <- clean_taxa(long.fill)
long.fill[long.fill == "UNIDENTIFIED"] <- NA
long.fill <- long.fill[!is.na(long.fill$PHYLUM), ]
long.sub <- fill_taxa(unique(long.fill[, c("TSN", taxa)]))
long.fill <- long.fill[, !names(long.fill) %in% taxa]
long.fill <- merge(long.fill, long.sub, by = "TSN", all.x = T)
fam.fill <- wide(long.fill, "FAMILY")
#============================================================================
Family <- BIBI::wide(Long, "FAMILY")
Order <- BIBI::wide(Long, "ORDER")
#Rarefied <- BIBI::prarefy(Long)
rare.long <- BIBI::prep_rare(Long, master, "FAMILY", 100, NULL, FALSE)
rare.long[, taxa] <- fill_taxa(rare.long[, taxa])
Rarefied <- BIBI::wide(rare.long, "FAMILY")
metrics <- data.frame(Family[, 1:5])
metrics$EPT_RICH_NO_TOL <- BIBI::ept_rich_no_tol(rare.long, "FAMILY", master, tolerance_value = tol_col)
metrics$PCT_SCRAPER <- BIBI::pct_attribute(fam.fill, master, ffg_col, "SC", "FAMILY")
metrics$TAXA_RICH_100 <- vegan::specnumber(Rarefied[, 6:ncol(Rarefied)])
metrics$PCT_EPHEMEROPTERA <- BIBI::pct_ephemeroptera(Order)
metrics$SW <- BIBI::shannon(Family)
return(metrics)
}
#==============================================================================
#'Score NCA Metrics
#'
#'@param Info = Taxonomic Information
#'@param Long = Taxonomic data in long format
#'@param tol_col = Specify Tolerance value column.
#'@param ffg_col = Specify Funtional Feeding Group column.
#'@param scoring = If scoring is set to "DISCRETE" the 1-3-5 method will be used.
#'If scoring is set to "GRADIENT" a continuous scoring procedure will be used.
#'@return Metric scores for sites within the NCA bioregion
#'@export
score_nca <- function(Info, Long, tol_col, ffg_col, scoring) {
metrics <- metrics_nca(Info, Long, tol_col, ffg_col)
nca.thresh <- data.frame(XT = c(9, 8.45, 15, 24.26, 2.19),
XM = c(11, 13.3, 17, 40.22, 2.38))
rownames(nca.thresh) <- c("EPT_TAXA_COUNT_NO_TOL_100", "%SCRAPER",
"%TAXA_RICH_100", "%EPHEM", "Shannon")
thresh <- data.frame(nca.thresh)
score <- data.frame(metrics[, c("EVENT_ID", "STATION_ID", "DATE", "SAMPLE_NUMBER",
"AGENCY_CODE")])
if(scoring %in% "DISCRETE"){
score$EPT_RICH_NO_TOL<- score_1_3_5(metrics, thresh[1, ], "EPT_RICH_NO_TOL", "DECREASE")
score$PCT_SCRAPER <- score_1_3_5(metrics, thresh[2, ], "PCT_SCRAPER", "DECREASE")
score$TAXA_RICH_100 <- score_1_3_5(metrics, thresh[3, ], "TAXA_RICH_100", "DECREASE")
score$PCT_EPHEMEROPTERA <- score_1_3_5(metrics, thresh[4, ], "PCT_EPHEMEROPTERA", "DECREASE")
score$SW <- score_1_3_5(metrics, thresh[5, ], "SW", "DECREASE")
}else{
if(scoring %in% "GRADIENT"){
score$EPT_RICH_NO_TOL <- ifelse (metrics$EPT_RICH_NO_TOL > thresh$XT[1] &
metrics$EPT_RICH_NO_TOL < thresh$XM[1],
((metrics$EPT_RICH_NO_TOL - thresh$XT[1]) /
(thresh$XM[1] - thresh$XT[1])) * 100,
ifelse (metrics$EPT_RICH_NO_TOL <= thresh$XT[1], 0,
ifelse (metrics$EPT_RICH_NO_TOL >= thresh$XM[1],
100, "ERROR")))
score$PCT_SCRAPER <- ifelse (metrics$PCT_SCRAPER > thresh$XT[2] &
metrics$PCT_SCRAPER < thresh$XM[2],
((metrics$PCT_SCRAPER - thresh$XT[2]) /
(thresh$XM[2] - thresh$XT[2])) * 100,
ifelse (metrics$PCT_SCRAPER <= thresh$XT[2], 0,
ifelse (metrics$PCT_SCRAPER >= thresh$XM[2], 100,
"ERROR")))
score$TAXA_RICH_100 <- ifelse (metrics$TAXA_RICH_100 > thresh$XT[3] &
metrics$TAXA_RICH_100 < thresh$XM[3],
((metrics$TAXA_RICH_100 - thresh$XT[3]) /
(thresh$XM[3] - thresh$XT[3])) * 100,
ifelse (metrics$TAXA_RICH_100 <= thresh$XT[3], 0,
ifelse (metrics$TAXA_RICH_100 >= thresh$XM[3], 100,
"ERROR")))
score$PCT_EPHEMEROPTERA <- ifelse (metrics$PCT_EPHEMEROPTERA > thresh$XT[4] &
metrics$PCT_EPHEMEROPTERA <
thresh$XM[4],
((metrics$PCT_EPHEMEROPTERA -
thresh$XT[4]) /
(thresh$XM[4] - thresh$XT[4])) * 100,
ifelse (metrics$PCT_EPHEMEROPTERA <=
thresh$XT[4], 0,
ifelse (metrics$PCT_EPHEMEROPTERA >=
thresh$XM[4],
100, "ERROR")))
score$SW <- ifelse (metrics$SW > thresh$XT[5] & metrics$SW < thresh$XM[5],
((metrics$SW - thresh$XT[5]) /
(thresh$XM[5] - thresh$XT[5])) * 100,
ifelse (metrics$SW <= thresh$XT[5], 0,
ifelse (metrics$SW >= thresh$XM[5], 100, "ERROR")))
}
}
return(prep_score(score, metrics))
}
#==============================================================================
#'NCA
#'
#'@param Long = Taxonomic data in long format
#'@param Info = Taxonomic Information
#'@param tol_col = Specify Tolerance value column.
#'@param ffg_col = Specify Funtional Feeding Group column.
#'@param scoring = If scoring is set to "DISCRETE" the 1-3-5 method will be used.
#'If scoring is set to "GRADIENT" a continuous scoring procedure will be used.
#'@return Prepare the taxonomic data and score all metrics for each sites
#' within the NCA bioregion
#'@export
nca <- function(Info, Long, tol_col, ffg_col, scoring) {
prep <- prep_nca(Long)
n.score <- score_nca(Info, prep, tol_col, ffg_col, scoring)
return(n.score)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.