#==============================================================================
# Piedmont
#==============================================================================
#'Piedmont: Standarize Taxonomic Resolution
#'
#'@param Long = Taxonomic data in long format
#'@return Removes and adjusts taxonomic resolution to make data sets from
#'multiple sources comparable.
#'@export
pied_clean_taxa <- function(Long){
Long <- Long[!Long$TSN %in% Chessie::exclusions_2011$TSN, ]
phy <- wide(Long, "PHYLUM")
nematoda <- if("NEMATODA" %in% names(phy)){
(phy$NEMATODA / rowSums(phy[,6:ncol(phy)])) * 100
}else{
0
}
cat("Nematoda were excluded from the data.\
The maximum percentage of Nematoda found in a sample was",
round(max(nematoda ), 2),"%.")
subphy <- wide(Long, "SUBPHYLUM")
mites <- if("CHELICERATA" %in% names(subphy)){
(subphy$CHELICERATA / rowSums(subphy[,6:ncol(subphy)])) * 100
}else{
0
}
cat("Mites were excluded from the data.\
The maximum percentage of Mites found in a sample was", round(max(mites), 2),"%.")
phy_spp <- c("PHYLUM", "SUBPHYLUM", "CLASS", "SUBCLASS", "ORDER", "SUBORDER",
"FAMILY", "SUBFAMILY", "TRIBE", "GENUS", "SPECIES")
Long[Long$PHYLUM %in% c("NEMATODA"), phy_spp] <- "UNIDENTIFIED"
Long[Long$SUBPHYLUM %in% c("CHELICERATA"), phy_spp] <- "UNIDENTIFIED"
fam_spp <- c("SUBFAMILY", "TRIBE", "GENUS", "SPECIES")
#Long[Long$CLASS %in% c("OLIGOCHAETA", "HIRUDINEA",
# "GASTROPODA"), fam_spp] <- "UNIDENTIFIED"
Long[Long$CLASS %in% "OLIGOCHAETA", fam_spp] <- Long[Long$CLASS %in% "OLIGOCHAETA", "FAMILY"]
Long[Long$CLASS %in% "HIRUDINEA", fam_spp] <- Long[Long$CLASS %in% "HIRUDINEA", "FAMILY"]
Long[Long$CLASS %in% "GASTROPODA", fam_spp] <- Long[Long$CLASS %in% "GASTROPODA", "FAMILY"]
Long[Long$FAMILY %in% c("CHIRONOMIDAE"), fam_spp] <- "CHIRONOMIDAE"
return(Long)
}
#==============================================================================
#'Piedmont Data PREP
#'
#'@param Long = Taxonomic data in long format
#'@return Subset the data to only sites in the Piedmont bioregion with a
#'Strahler Stream order <= 4
#'@export
prep_pied <- function(Long) {
sub.pied <- subset(Long, Long$ECOREGION_LEVEL_4 %in%
c("45c", "45C", "45e", "45E", "45f", "45F", "45g",
"45G", "58h", "58H", "64d", "64D", "64c", "64C",
"64b", "64B", "64a", "64A"))
sub.method <- prep_subset(sub.pied)
agg.pied <- bioregion_agg(sub.method)
final.df <- agg.pied
#final.df <- pied_clean_taxa(agg.pied)
return(final.df)
}
#==============================================================================
#'Piedmont metrics
#'
#'@param Info = Taxonomic Information
#'@param Long = Taxonomic data in long format
#'@param tol_col = Specify Tolerance value column.
#'@param ffg_col = Specify Funtional Feeding Group column.
#'@return 2011 Chessie BIBI metrics for the Piedmont ecoregion
#'@export
metrics_pied <- function(master, Long, taxa.rank, tol_col, ffg_col) {
Long <- Long[!Long$TSN %in% Chessie::exclusions_2011$TSN, ]
#============================================================================
# These should be used for taxa attribute related metrics
taxa <- c("PHYLUM", "SUBPHYLUM", "CLASS",
"SUBCLASS", "ORDER", "SUBORDER",
"FAMILY", "SUBFAMILY", "TRIBE",
"GENUS", "SPECIES")
#master2 <- fill_taxa(master)
#master.fill <- unique(master2[, c("TSN_R", taxa)])
#test <- (master.fill[duplicated(master.fill$TSN_R), ])
long.fill <- Long
#long.fill <- clean_taxa(long.fill)
long.fill[long.fill == "UNIDENTIFIED"] <- NA
long.fill <- long.fill[!is.na(long.fill$PHYLUM), ]
long.sub <- fill_taxa(unique(long.fill[, c("TSN", taxa)]))
long.fill <- long.fill[, !names(long.fill) %in% taxa]
long.fill <- merge(long.fill, long.sub, by = "TSN", all.x = T)
fam.fill <- wide(long.fill, "FAMILY")
#============================================================================
Family <- BIBI::wide(Long, "FAMILY")
names(Family) <- toupper(colnames(Family))
Order <- BIBI::wide(Long, "ORDER")
pied_metrics <- data.frame(Family[, 1:5])
#pied_metrics$FBI <- BIBI::tol_index(Long, Info, Index = "F_HILSENHOFF",
# Level = "FAMILY")
pied_metrics$FBI <- tol_index(long.fill, master, tol_col, taxa.rank)
#pied_metrics$PCT_COLLECT <- BIBI::pct_group(Family, Info,
# "GUILD", c("CG", "CF"), "FAMILY")
pied_metrics$PCT_COLLECT <- pct_attribute(fam.fill, master, ffg_col, c("CG", "CF"), taxa.rank)
pied_metrics$PCT_DIPTERA <- BIBI::pct_diptera(Order)
pied_metrics$PCT_EPT <- BIBI::pct_ept(Order)
pied_metrics$SW <- BIBI::shannon(Family)
return(pied_metrics)
}
#==============================================================================
#'Score Piedmont Metrics
#'
#'@param Info = Taxonomic Information
#'@param Long = Taxonomic data in long format
#'@param tol_col = Specify Tolerance value column.
#'@param ffg_col = Specify Funtional Feeding Group column.
#'@param scoring = If scoring is set to "DISCRETE" the 1-3-5 method will be used.
#'If scoring is set to "GRADIENT" a continuous scoring procedure will be used.
#'@return Metric scores for sites within the Piedmont bioregion
#'@export
score_pied <- function(Info, Long, taxa.rank, tol_col, ffg_col, scoring) {
metrics <- metrics_pied(Info, Long, taxa.rank, tol_col, ffg_col)
Piedmont_Thres <- matrix(c(4.54, 71.02, 11.72, 48.12, 1.92, 3.63, 52.71, 6.6,
72.24, 2.17), nrow = 5, ncol = 2)
rownames(Piedmont_Thres) <- c("FBI", "%Col", "%Dip", "%EPT", "Shannon")
colnames(Piedmont_Thres) <- c("XT", "XM")
thresh <- data.frame(Piedmont_Thres)
score <- data.frame(metrics[, c("EVENT_ID", "STATION_ID", "DATE", "SAMPLE_NUMBER",
"AGENCY_CODE")])
if(scoring %in% "DISCRETE"){
score$FBI <- score_1_3_5(metrics, thresh[1, ], "FBI", "INCREASE")
score$PCT_COLLECT <- score_1_3_5(metrics, thresh[2, ], "PCT_COLLECT", "INCREASE")
score$PCT_DIPTERA <- score_1_3_5(metrics, thresh[3, ], "PCT_DIPTERA", "INCREASE")
score$PCT_EPT <- score_1_3_5(metrics, thresh[4, ], "PCT_EPT", "DECREASE")
score$SW <- score_1_3_5(metrics, thresh[5, ], "SW", "DECREASE")
}else{
if(scoring %in% "GRADIENT"){
score$FBI <- ifelse (metrics$FBI < thresh$XT[1] & metrics$FBI > thresh$XM[1],
((thresh$XT[1] - metrics$FBI) / (thresh$XT[1] - thresh$XM[1])) * 100,
ifelse (metrics$FBI >= thresh$XT[1], 0,
ifelse (metrics$FBI <= thresh$XM[1], 100, "ERROR")))
score$PCT_COLLECT <- ifelse (metrics$PCT_COLLECT < thresh$XT[2] &
metrics$PCT_COLLECT > thresh$XM[2],
((thresh$XT[2]-metrics$PCT_COLLECT) /
(thresh$XT[2] - thresh$XM[2])) * 100,
ifelse (metrics$PCT_COLLECT >= thresh$XT[2], 0,
ifelse (metrics$PCT_COLLECT <= thresh$XM[2], 100, "ERROR")))
score$PCT_DIPTERA <- ifelse (metrics$PCT_DIPTERA < thresh$XT[3] &
metrics$PCT_DIPTERA > thresh$XM[3],
((thresh$XT[3] - metrics$PCT_DIPTERA) /
(thresh$XT[3] - thresh$XM[3])) * 100,
ifelse (metrics$PCT_DIPTERA >= thresh$XT[3], 0,
ifelse (metrics$PCT_DIPTERA <= thresh$XM[3], 100,
"ERROR")))
score$PCT_EPT <- ifelse (metrics$PCT_EPT > thresh$XT[4] & metrics$PCT_EPT < thresh$XM[4],
((metrics$PCT_EPT - thresh$XT[4]) /
(thresh$XM[4] - thresh$XT[4])) * 100,
ifelse (metrics$PCT_EPT <= thresh$XT[4], 0,
ifelse (metrics$PCT_EPT >= thresh$XM[4], 100, "ERROR")))
score$SW <- ifelse (metrics$SW > thresh$XT[5] & metrics$SW < thresh$XM[5],
((metrics$SW - thresh$XT[5]) / (thresh$XM[5] - thresh$XT[5])) * 100,
ifelse(metrics$SW <= thresh$XT[5], 0,
ifelse(metrics$SW >= thresh$XM[5], 100, "ERROR")))
}
}
return(prep_score(score, metrics))
}
#==============================================================================
#'Piedmont
#'
#'@param Long = Taxonomic data in long format
#'@param Info = Taxonomic Information
#'@param tol_col = Specify Tolerance value column.
#'@param ffg_col = Specify Funtional Feeding Group column.
#'@param scoring = If scoring is set to "DISCRETE" the 1-3-5 method will be used.
#'If scoring is set to "GRADIENT" a continuous scoring procedure will be used.
#'@return Prepare the taxonomic data and score all metrics for each sites
#' within the Piedmont bioregion
#'@export
pied <- function(Info, Long, taxa.rank, tol_col, ffg_col, scoring) {
prep <- prep_pied(Long)
p.score <- score_pied(Info, prep, taxa.rank, tol_col, ffg_col, scoring)
return(p.score)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.