# ==============================================================================
# Composition Metrics
# ==============================================================================
#' Relative Taxonomic Richness
#' @description Calculate the percentage of each sample represented by the
#' specified taxon or taxa.
#' @param .dataframe A data frame where each row should represent the number of
#' individuals enumerated for a single taxon collected during a single sampling event.
#' @param .key_col One unquoted column name that represents a key (i.e., unique ID)
#' for a sampling event for which to group (i.e., aggregate) the data.
#' @param .counts_col One unquoted column name that represents taxonomic counts.
#' Zero counts will be excluded from the calculation.
#' @param .filter A logical statement to subset the data frame prior to calculating
#' the metric of interest.
#' @param .unnest_col One unqouted column name that represents nested data.
#' If this column is NULL (default), then the data will not be unnested.
#' @param .group_col One unquoted column name that represents a taxomic rank
#' or group of interest.
#' @return A numeric vector.
#' @importFrom rlang .data
#' @importFrom magrittr "%>%"
#' @export
taxa_pct_rich <- function(.dataframe, .key_col, .group_col, .counts_col,
.filter = NULL,
.unnest_col = NULL) {
prep.df <- prep_taxa_df(
.dataframe = .dataframe,
.key_col = {{.key_col}},
.unnest_col = {{.unnest_col}},
.filter = NULL
)
#----------------------------------------------------------------------------
group.df <- prep.df %>%
dplyr::group_nest({{.key_col}}, .key = "data")
final.vec <- group.df %>%
dplyr::mutate(
rich = taxa_rich(
.dataframe = group.df,
.key_col = {{.key_col}},
.group_col = {{.group_col}},
.counts_col = {{.counts_col}},
.unnest_col = .data$data
),
taxa_rich = taxa_rich(
.dataframe = group.df,
.key_col = {{.key_col}},
.group_col = {{.group_col}},
.counts_col = {{.counts_col}},
.filter = {{.filter}},
.unnest_col = .data$data
),
pct_rich = dplyr::if_else(
.data$taxa_rich == 0,
as.double(0),
as.double(.data$taxa_rich / .data$rich * 100)
)
) %>%
original_order(.dataframe, {{.key_col}}) %>%
dplyr::pull(.data$pct_rich)
#----------------------------------------------------------------------------
return(final.vec)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.