fitdistr | R Documentation |
Maximum-likelihood fitting of univariate distributions, allowing parameters to be held fixed if desired.
fitdistr(x, densfun, start, ...)
x |
A numeric vector of length at least one containing only finite values. |
densfun |
Either a character string or a function returning a density evaluated at its first argument. Distributions |
start |
A named list giving the parameters to be optimized with initial values. This can be omitted for some of the named distributions and must be for others (see Details). |
... |
Additional parameters, either for |
For the Normal, log-Normal, geometric, exponential and Poisson
distributions the closed-form MLEs (and exact standard errors) are
used, and start
should not be supplied.
For all other distributions, direct optimization of the log-likelihood
is performed using optim
. The estimated standard
errors are taken from the observed information matrix, calculated by a
numerical approximation. For one-dimensional problems the Nelder-Mead
method is used and for multi-dimensional problems the BFGS method,
unless arguments named lower
or upper
are supplied (when
L-BFGS-B
is used) or method
is supplied explicitly.
For the "t"
named distribution the density is taken to be the
location-scale family with location m
and scale s
.
For the following named distributions, reasonable starting values will
be computed if start
is omitted or only partially specified:
"cauchy"
, "gamma"
, "logistic"
,
"negative binomial"
(parametrized by mu
and
size
), "t"
and "weibull"
. Note that these
starting values may not be good enough if the fit is poor: in
particular they are not resistant to outliers unless the fitted
distribution is long-tailed.
There are print
, coef
, vcov
and logLik
methods for class "fitdistr"
.
An object of class "fitdistr"
, a list with four components,
estimate |
the parameter estimates, |
sd |
the estimated standard errors, |
vcov |
the estimated variance-covariance matrix, and |
loglik |
the log-likelihood. |
Numerical optimization cannot work miracles: please note the comments
in optim
on scaling data. If the fitted parameters are
far away from one, consider re-fitting specifying the control
parameter parscale
.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
## avoid spurious accuracy
op <- options(digits = 3)
set.seed(123)
x <- rgamma(100, shape = 5, rate = 0.1)
fitdistr(x, "gamma")
## now do this directly with more control.
fitdistr(x, dgamma, list(shape = 1, rate = 0.1), lower = 0.001)
set.seed(123)
x2 <- rt(250, df = 9)
fitdistr(x2, "t", df = 9)
## allow df to vary: not a very good idea!
fitdistr(x2, "t")
## now do fixed-df fit directly with more control.
mydt <- function(x, m, s, df) dt((x-m)/s, df)/s
fitdistr(x2, mydt, list(m = 0, s = 1), df = 9, lower = c(-Inf, 0))
set.seed(123)
x3 <- rweibull(100, shape = 4, scale = 100)
fitdistr(x3, "weibull")
set.seed(123)
x4 <- rnegbin(500, mu = 5, theta = 4)
fitdistr(x4, "Negative Binomial")
options(op)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.