Description Usage Arguments Details Value Examples
Function to obtain the default model options.
1 | get_default_model_options(object)
|
object |
an untrained |
This function provides a default set of model options that can be modified and passed to the MOFA
object
in the prepare_mofa
step (see example), i.e. after creating a MOFA
object
(using create_mofa
) and before starting the training (using run_mofa
)
The model options are the following:
likelihoods: character vector with data likelihoods per view: 'gaussian' for continuous data (Default for all views), 'bernoulli' for binary data and 'poisson' for count data.
num_factors: numeric value indicating the (initial) number of factors. Default is 15.
spikeslab_factors: logical indicating whether to use spike and slab sparsity on the factors (Default is FALSE)
spikeslab_weights: logical indicating whether to use spike and slab sparsity on the weights (Default is TRUE)
ard_factors: logical indicating whether to use ARD sparsity on the factors (Default is TRUE only if using multiple groups)
ard_weights: logical indicating whether to use ARD sparsity on the weights (Default is TRUE)
Returns a list with the default model options.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | # Using an existing simulated data with two groups and two views
file <- system.file("extdata", "test_data.RData", package = "MOFA2")
# Load data dt (in data.frame format)
load(file)
# Create the MOFA object
MOFAmodel <- create_mofa(dt)
# Load default model options
model_opts <- get_default_model_options(MOFAmodel)
# Edit some of the model options
model_opts$num_factors <- 10
model_opts$spikeslab_weights <- FALSE
# Prepare the MOFA object
MOFAmodel <- prepare_mofa(MOFAmodel, model_options = model_opts)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.