seqdiff | R Documentation |
The function analyses how the differences between groups of sequences evolve along the positions. It runs a sequence of discrepancy analyses on sliding windows.
seqdiff(seqdata, group, cmprange = c(0, 1),
seqdist.args = list(method = "LCS", norm = "auto"), with.missing = FALSE,
weighted = TRUE, squared = FALSE, seqdist_arg)
seqdata |
a state sequence object created with the |
group |
The group variable. |
cmprange |
Vector of two integers: Time range of the sliding windows. Comparison at |
seqdist.args |
List of arguments passed to |
with.missing |
Logical. If |
weighted |
Logical. If |
squared |
Logical. If |
seqdist_arg |
Deprecated. Use |
The function analyses how the part of discrepancy explained by the group
variable evolves along the position axis. It runs successively discrepancy analyses within a sliding time-window of range cmprange
). At
each position t
, the method uses seqdist
to compute a distance matrix over the time-window (t +
cmprange[1]
, t +
cmprange[2]
) and then derives the explained discrepancy on that window with dissassoc
.
There are print and plot methods for the returned value.
A seqdiff
object, with the following items:
stat |
A |
discrepancy |
A |
Matthias Studer (with Gilbert Ritschard for the help page)
Studer, M., G. Ritschard, A. Gabadinho and N. S. Müller (2011). Discrepancy analysis of state sequences, Sociological Methods and Research, Vol. 40(3), 471-510, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1177/0049124111415372")}.
Studer, M., G. Ritschard, A. Gabadinho and N. S. Müller (2010) Discrepancy analysis of complex objects using dissimilarities. In F. Guillet, G. Ritschard, D. A. Zighed and H. Briand (Eds.), Advances in Knowledge Discovery and Management, Studies in Computational Intelligence, Volume 292, pp. 3-19. Berlin: Springer.
Studer, M., G. Ritschard, A. Gabadinho and N. S. Müller (2009) Analyse de dissimilarités par arbre d'induction. In EGC 2009, Revue des Nouvelles Technologies de l'Information, Vol. E-15, pp. 7-18.
dissassoc
to analyse the association of the group
variable with the whole sequence
## Define a state sequence object
data(mvad)
## First 12 months of first 100 trajectories
mvad.seq <- seqdef(mvad[1:100, 17:28])
## Position-wise discrepancy analysis using
## centered sliding windows of length 5.
mvad.diff <- seqdiff(mvad.seq, group=mvad$gcse5eq[1:100], cmprange=c(-2,2))
print(mvad.diff)
plot(mvad.diff, stat=c("Pseudo R2", "Levene"))
plot(mvad.diff, stat="discrepancy")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.