wt.image: Image plot of the wavelet power spectrum of a single time...

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/wt.image.R

Description

This function plots the wavelet power spectrum of a single time series, which is provided by an object of class "analyze.wavelet", or alternatively of class "analyze.coherency". (In the latter case, the series number or name must be specified.) The vertical axis shows the Fourier periods. The horizontal axis shows time step counts, but can be easily transformed into a calendar axis if dates are provided in either row names or as a variable named "date" in the data frame at hand. Both axes can be relabeled. In particular, an option is given to individualize the period and/or time axis by specifying tick marks and labels.

An option is given to raise wavelet power values to any (positive) exponent before plotting in order to accentuate the contrast of the image.

The color levels can be defined according to quantiles of values or according to equidistant breakpoints (covering the interval from 0 to maximum level), with the number of levels as a further parameter. A user-defined maximum level can be applied. In addition, there is an option to adopt an individual color palette.

Further plot design options concern: plot of the cone of influence, plot of wavelet power contour lines at a specified level of significance, plot of power ridges.

Finally, there is an option to insert and format a color legend (a right-hand vertical color bar) and to set the plot title. For further processing of the plot, graphical parameters of plot regions are provided as output.

The name and parts of the layout were inspired by a similar function developed by Huidong Tian and Bernard Cazelles (archived R package WaveletCo).

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
wt.image(WT, my.series = 1, exponent = 1,
     plot.coi = TRUE, 
     plot.contour = TRUE, siglvl = 0.1, col.contour = "white",
     plot.ridge = TRUE, lvl = 0, col.ridge = "black", 
     color.key = "quantile", 
     n.levels = 100, 
     color.palette = "rainbow(n.levels, start = 0, end = .7)",
     maximum.level = NULL,
     useRaster = TRUE, max.contour.segments = 250000,
     plot.legend = TRUE,
     legend.params = list(width = 1.2, shrink = 0.9, mar = 5.1, 
                          n.ticks = 6, 
                          label.digits = 1, label.format = "f", 
                          lab = NULL, lab.line = 2.5),
     label.time.axis = TRUE, 
     show.date = FALSE, date.format = NULL, date.tz = NULL, 
     timelab = NULL, timetck = 0.02, timetcl = 0.5,
     spec.time.axis = list(at = NULL, labels = TRUE, 
                           las = 1, hadj = NA, padj = NA),
     label.period.axis = TRUE, 
     periodlab = NULL, periodtck = 0.02, periodtcl = 0.5,
     spec.period.axis = list(at = NULL, labels = TRUE, 
                             las = 1, hadj = NA, padj = NA),
     main = NULL,
     lwd = 2, lwd.axis = 1, 
     graphics.reset = TRUE,
     verbose = FALSE)

Arguments

WT

an object of class "analyze.wavelet" or "analyze.coherency"

my.series

In case class(WT) = "analyze.coherency": number (1 or 2) or name of the series to be analyzed.

Default: 1.

exponent

Exponent applied to values before plotting in order to accentuate the contrast of the image; the exponent should be positive.

Default: 1.

plot.coi

Plot cone of influence? Logical. Default: TRUE.

plot.contour

Plot contour lines to border the area of wavelet power significance? Logical.

Default: TRUE.

siglvl

level of wavelet power significance to be applied to the plot of contour lines.

Default: 0.1.

col.contour

color of contour lines. Default: "white".

plot.ridge

Plot the wavelet power ridge? Logical.

Default: TRUE.

lvl

minimum level of wavelet power for ridge to be plotted.

Default: 0.

col.ridge

ridge color. Default: "black".

color.key

How to assign colors to power and coherence levels? Two options:

"interval" or "i" : equidistant breakpoints
(from 0 through maximum value)
"quantile" or "q" : quantiles

Default: "quantile".

n.levels

Number of color levels. Default: 100.

color.palette

Definition of color levels. (The color palette will be assigned to levels in reverse order!)

Default: "rainbow(n.levels, start = 0, end = .7)".

maximum.level

Maximum plot level of wavelet power considered; only effective in case of equidistant breakpoints (color.key equaling "i").

Default: NULL (referring to maximum level observed).

useRaster

Use a bitmap raster instead of polygons to plot the image? Logical.

Default: TRUE.

max.contour.segments

limit on the number of segments in a single contour line, positive integer.

Default: 250000 (options(...) default settings: 25000).

plot.legend

Plot color legend (a vertical bar of colors and breakpoints)? Logical.

Default: TRUE.

legend.params

a list of parameters for the plot of the color legend; parameter values can be set selectively (style in parts adopted from image.plot in the R package fields by Douglas Nychka):

  • [width:] width of legend bar.
    Default: 1.2.

  • [shrink:] a vertical shrinkage factor.
    Default: 0.9.

  • [mar:] right margin of legend bar.
    Default: 5.1.

  • [n.ticks:] number of ticks for labels.
    Default: 6.

  • [label.digits:] digits of labels.
    Default: 1.

  • [label.format:] format of labels.
    Default: "f".

  • [lab:] axis label.
    Default: NULL.

  • [lab.line:] line (in user coordinate units) where to put the axis label.
    Default: 2.5.

label.time.axis

Label the time axis? Logical.

Default: TRUE.

show.date

Show calendar dates? (Effective only if dates are available as row names or by variable date in the data frame which is analyzed.) Logical.

Default: FALSE.

date.format

the format of calendar date given as a character string, e.g. "%Y-%m-%d", or equivalently "%F"; see strptime for a list of implemented date conversion specifications. Explicit information given here will overturn any specification stored in WT. If unspecified, date formatting is attempted according to as.Date.

Default: NULL.

date.tz

a character string specifying the time zone of calendar date; see strptime. Explicit information given here will overturn any specification stored in WT. If unspecified, "" (the local time zone) is used.

Default: NULL.

timelab

Time axis label.

Default: "index"; in case of a calendar axis: "calendar date".

timetck

length of tick marks on the time axis as a fraction of the smaller of the width or height of the plotting region; see par. If timetck >= 0.5, timetck is interpreted as a fraction of the length of the time axis, so if timetck = 1 (and timetcl = NULL), vertical grid lines will be drawn.
Setting timetck = NA is to use timetcl = -0.5 (which is the R default setting of tck and tcl).

Default here: 0.02.

timetcl

length of tick marks on the time axis as a fraction of the height of a line of text; see par. With timetcl = -0.5 (which is the R default setting of tcl), ticks will be drawn outward.

Default here: 0.5.

spec.time.axis

a list of tick mark and label specifications for individualized time axis labeling (only effective if label.time.axis = TRUE):

  • [at:] locations of tick marks (when NULL, default plotting will be applied). Valid tick marks can be provided as numerical values or as dates. Dates are used only in the case show.date = TRUE, however, and date formats should conform to as.Date or the format given in date.format.
    Default: NULL.

  • [labels:] either a logical value specifying whether annotations at the tick marks are the tick marks themselves, or any vector of labels. If labels is non-logical, at should be of same length.
    Default: TRUE.

  • [las:] the style of axis labels, see par.
    Default: 1 (always horizontal).

  • [hadj:] adjustment of labels horizontal to the reading direction, see axis.
    Default: NA (centering is used).

  • [padj:] adjustment of labels perpendicular to the reading direction (this can be a vector of adjustments for each label), see axis.
    Default: NA (centering is used).

Mismatches will result in a reset to default plotting.

label.period.axis

Label the (Fourier) period axis? Logical.

Default: TRUE.

periodlab

(Fourier) period axis label.

Default: "period".

periodtck

length of tick marks on the period axis as a fraction of the smaller of the width or height of the plotting region; see par. If periodtck >= 0.5, periodtck is interpreted as a fraction of the length of the period axis, so if periodtck = 1 (and periodtcl = NULL), horizontal grid lines will be drawn.
Setting periodtck = NA is to use periodtcl = -0.5 (which is the R default setting of tck and tcl).

Default here: 0.02.

periodtcl

length of tick marks on the period axis as a fraction of the height of a line of text; see par. With periodtcl = -0.5 (which is the R default setting of tcl) ticks will be drawn outward.

Default here: 0.5.

spec.period.axis

a list of tick mark and label specifications for individualized period axis labeling (only effective if label.period.axis = TRUE):

  • [at:] locations of tick marks (when NULL, default plotting will be applied). Valid tick marks can be provided as numerical and positive values only.
    Default: NULL.

  • [labels:] either a logical value specifying whether annotations at the tick marks are the tick marks themselves, or any vector of labels. If labels is non-logical, at should be of same length.
    Default: TRUE.

  • [las:] the style of axis labels, see par.
    Default: 1 (always horizontal).

  • [hadj:] adjustment of labels horizontal to the reading direction, see axis.
    Default: NA (centering is used).

  • [padj:] adjustment of labels perpendicular to the reading direction (this can be a vector of adjustments for each label), see axis.
    Default: NA (centering is used).

Mismatches will result in a reset to default plotting.

main

an overall title for the plot.

Default: NULL.

lwd

line width of contour lines and ridge.

Default: 2.

lwd.axis

line width of axes (image and legend bar).

Default: 1.

graphics.reset

Reset graphical parameters? Logical.

Default: TRUE.

verbose

Print verbose output on the screen? Logical.

Default: FALSE.

Value

A list of class graphical parameters with the following elements:

op

original graphical parameters

image.plt

image plot region

legend.plt

legend plot region

Author(s)

Angi Roesch and Harald Schmidbauer; credits are also due to Huidong Tian and Bernard Cazelles

References

Aguiar-Conraria L., and Soares M.J., 2011. The Continuous Wavelet Transform: A Primer. NIPE Working Paper Series 16/2011.

Carmona R., Hwang W.-L., and Torresani B., 1998. Practical Time Frequency Analysis. Gabor and Wavelet Transforms with an Implementation in S. Academic Press, San Diego.

Cazelles B., Chavez M., Berteaux, D., Menard F., Vik J.O., Jenouvrier S., and Stenseth N.C., 2008. Wavelet analysis of ecological time series. Oecologia 156, 287–304.

Liu Y., Liang X.S., and Weisberg R.H., 2007. Rectification of the Bias in the Wavelet Power Spectrum. Journal of Atmospheric and Oceanic Technology 24, 2093–2102.

Tian, H., and Cazelles, B., 2012. WaveletCo. Available at https://cran.r-project.org/src/contrib/Archive/WaveletCo/, archived April 2013; accessed July 26, 2013.

Torrence C., and Compo G.P., 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79 (1), 61–78.

See Also

analyze.wavelet, wt.avg, wt.sel.phases, wt.phase.image, reconstruct

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
## Not run: 
## The following example is adopted from Liu et al., 2007:

series.length <- 6*128*24
x1 <- periodic.series(start.period = 1*24, length = series.length)
x2 <- periodic.series(start.period = 8*24, length = series.length)
x3 <- periodic.series(start.period = 32*24, length = series.length)
x4 <- periodic.series(start.period = 128*24, length = series.length)

x <- x1 + x2 + x3 + x4

plot(x, type = "l", xlab = "index", ylab = "", xaxs = "i",
     main = "hourly series with periods of 1, 8, 32, 128 days")
     
## The following dates refer to the local time zone 
## (possibly allowing for daylight saving time):      
my.date <- seq(as.POSIXct("2014-10-14 00:00:00", format = "%F %T"), 
               by = "hour", 
               length.out = series.length)     
my.data <- data.frame(date = my.date, x = x)

## Computation of wavelet power:
## a natural choice of 'dt' in the case of hourly data is 'dt = 1/24', 
## resulting in one time unit equaling one day. 
## This is also the time unit in which periods are measured.
my.wt <- analyze.wavelet(my.data, "x", 
                        loess.span = 0, 
                        dt = 1/24, dj = 1/20, 
                        lowerPeriod = 1/4, 
                        make.pval = TRUE, n.sim = 10)

## Plot of wavelet power spectrum 
## with color breakpoints referring to quantiles:  
wt.image(my.wt, main = "wavelet power spectrum",
   legend.params = list(lab = "wavelet power levels (quantiles)", 
                        lab.line = 3.5, 
                        label.digits = 2),
   periodlab = "period (days)")
## Note:
## The default time axis shows an index of given points in time, 
## which is the count of hours in our example.

## The same plot, but with equidistant color breakpoints: 
wt.image(my.wt, color.key = "i", main = "wavelet power spectrum",
   legend.params = list(lab = "wavelet power levels (equidistant)"),
   periodlab = "period (days)")
         
## Alternative styles of the time axis:          
         
## The plot with time elapsed in days, starting from 0 and proceeding 
## in steps of 50 days (50*24 hours),
## instead of the (default) time index:
index.ticks  <- seq(1, series.length, by = 50*24)
index.labels <- (index.ticks-1)/24
## Insert your specification of the time axis: 
wt.image(my.wt, color.key = "i", main = "wavelet power spectrum",
   legend.params = list(lab = "wavelet power levels (equidistant)"),
   periodlab = "period (days)", timelab = "time elapsed (days)",
   spec.time.axis = list(at = index.ticks, labels = index.labels))

## The plot with (automatically produced) calendar axis:
wt.image(my.wt, color.key = "i", main = "wavelet power spectrum",
   legend.params = list(lab = "wavelet power levels (equidistant)"), 
   periodlab = "period (days)",
   show.date = TRUE, date.format = "%F %T")

## Individualizing your calendar axis (works with 'show.date = TRUE')...
## How to obtain, for example, monthly date ticks and labels:

## The sequence of tick positions:
monthly.ticks <- seq(as.POSIXct("2014-11-01 00:00:00", format = "%F %T"), 
                     as.POSIXct("2016-11-01 00:00:00", format = "%F %T"), 
                     by = "month")
## Observe that the following specification may produce an error:
## 'seq(as.Date("2014-11-01"), as.Date("2016-11-01"), by = "month")'
## Time of the day is missing here!

## The sequence of labels (e.g. information on month and year only):
monthly.labels <- strftime(monthly.ticks, format = "%b %Y")

## Insert your specification of the time axis: 
wt.image(my.wt, color.key = "i", main = "wavelet power spectrum",
   legend.params = list(lab = "wavelet power levels (equidistant)"), 
   periodlab = "period (days)", 
   show.date = TRUE, date.format = "%F %T", 
   spec.time.axis = list(at = monthly.ticks, labels = monthly.labels, 
                         las = 2))
## Note: 
## The monthly ticks specify the midpoints of the colored cells and match 
## the location of corresponding (default) time index ticks.
         
## Furthermore, the plot with an individualized period axis:
wt.image(my.wt, color.key = "i", main = "wavelet power spectrum",
   legend.params = list(lab = "wavelet power levels (equidistant)"), 
   periodlab = "period (days)", 
   show.date = TRUE, date.format = "%F %T",
   spec.time.axis = list(at = monthly.ticks, labels = monthly.labels, 
                         las = 2),
   spec.period.axis = list(at = c(1,8,32,128))) 
         
## Switching the time axis from index to time elapsed in hours 
## (starting from 0, and proceeding in steps of 500 hours), 
## and the period axis from days to hours:
index.ticks  <- seq(1, series.length, by = 500)
index.labels <- index.ticks - 1
wt.image(my.wt, color.key = "i", main = "wavelet power spectrum",
   legend.params = list(lab = "wavelet power levels (equidistant)"), 
   timelab = "time elapsed (hours)", periodlab = "period (hours)",
   spec.time.axis = list(at = index.ticks, labels = index.labels),
   spec.period.axis = list(at = c(1,8,32,128), labels = c(1,8,32,128)*24))            

## A plot with different colors:
wt.image(my.wt, main = "wavelet power spectrum",
   legend.params = list(lab = "wavelet power levels (quantiles)", 
                        lab.line = 3.5, label.digits = 2), 
   color.palette = "gray((1:n.levels)/n.levels)", col.ridge = "yellow",
   periodlab = "period (days)")

## In the case of monthly (or quarterly) data, the time axis should be 
## labeled at equally spaced time points. An example:

monthyear <- seq(as.Date("2014-01-01"), as.Date("2018-01-01"),
                 by = "month")
monthyear <- strftime(monthyear, format = "%b %Y")

xx <- periodic.series(start.period = 6, length = length(monthyear))
xx <- xx + 0.2*rnorm(length(monthyear))

plot(xx, type = "l", xlab = "index", ylab = "", xaxs = "i",
     main = "monthly series with period of 6 months")

monthly.data <- data.frame(date = monthyear, xx = xx)
 
my.wt <- analyze.wavelet(monthly.data, "xx", loess.span = 0, 
                         dt = 1, dj = 1/250, 
                         make.pval = TRUE, n.sim = 250)
## Note: 
## The natural choice of 'dt' in this example is 'dt = 1', 
## resulting in periods measured in months. 
## (Setting 'dt = 1/12' would result in periods measured in years.)

## The default wavelet power plot then shows the monthly:
wt.image(my.wt, main = "wavelet power spectrum", 
   periodlab = "period (months)")

## The following plot shows the elapsed time, measured in months: 
wt.image(my.wt, main = "wavelet power spectrum", 
   periodlab = "period (months)", timelab = "time elapsed (months)",
   spec.time.axis = list(at = 1:length(monthyear), 
                         labels = (1:length(monthyear))-1))
                                     
## In case you prefer the monthyear labels themselves: 
wt.image(my.wt,  main = "wavelet power spectrum", 
   periodlab = "period (months)", timelab = "month and year",
   spec.time.axis = list(at = 1:length(monthyear), labels = monthyear)) 

## You may sometimes wish to enhance your plot with additional information. 
## There is an option to add further objects to the image plot region, 
## by setting 'graphics.reset = FALSE' 
## (but recall previous par settings after plotting):

op <- par(no.readonly = TRUE)
wt.image(my.wt, main = "wavelet power spectrum", 
   periodlab = "period (months)", 
   spec.period.axis = list(at = c(2,4,6,8,12)), 
   spec.time.axis = list(at = 1:length(monthyear),
                         labels = substr(monthyear,1,3)),
   graphics.reset = FALSE)
abline(h = log2(6), lty = 3)         
abline(v = seq(1, length(monthyear), by = 12), lty = 3)
mtext(2014:2018, side = 1, 
      at = seq(1, length(monthyear), by = 12), line = 2)
par(op)

## For further axis plotting options:
## Please see the examples in our guide booklet,
## URL http://www.hs-stat.com/projects/WaveletComp/WaveletComp_guided_tour.pdf.


## End(Not run)

WaveletComp documentation built on May 2, 2019, 6:33 a.m.