expm: Matrix Exponential

View source: R/expm.R

expmR Documentation

Matrix Exponential

Description

This function computes the exponential of a square matrix A, defined as the sum from r=0 to infinity of A^r/r!. Several methods are provided. The Taylor series and Padé approximation are very importantly combined with scaling and squaring.

Usage

expm(x, method = c("Higham08.b", "Higham08",
                   "AlMohy-Hi09",
                   "Ward77", "PadeRBS", "Pade", "Taylor", "PadeO", "TaylorO",
                   "R_Eigen", "R_Pade", "R_Ward77", "hybrid_Eigen_Ward"),
     order = 8, trySym = TRUE, tol = .Machine$double.eps, do.sparseMsg = TRUE,
     preconditioning = c("2bal", "1bal", "buggy"))

.methComplex # those 'method' s which also work for complex (number) matrices
.methSparse  # those 'method' s which work with _sparseMatrix_ w/o coercion to dense

Arguments

x

a square matrix.

method

"Higham08.b", "Ward77", "Pade" or "Taylor", etc; The default is now "Higham08.b" which uses Higham's 2008 algorithm with additional balancing preconditioning, see expm.Higham08.

The versions with "*O" call the original Fortran code, whereas the first ones call the BLAS-using and partly simplified newer code.
"R_Pade" uses an R-code version of "Pade" for didactical reasons, and
"R_Ward77" uses an R version of "Ward77", still based on LAPACK's dgebal, see R interface dgebal. This has enabled us to diagnose and fix the bug in the original octave implementation of "Ward77". "R_Eigen" tries to diagonalise the matrix x, if not possible, "R_Eigen" raises an error. "hybrid_Eigen_Ward" method also tries to diagonalise the matrix x, if not possible, it uses "Ward77" algorithm.

order

an integer, the order of approximation to be used, for the "Pade", incl "R_Ward77", and "Taylor" methods. The best value for this depends on machine precision (and slightly on x) but for the current double precision arithmetic, one recommendation (and the Matlab implementations) uses order = 6 unconditionally;
our default, 8, is from Ward(1977, p.606)'s recommendation, but also used for "AlMohy-Hi09" where a high order order=12 may be more appropriate (and slightly more expensive).

trySym

logical indicating if method = "R_Eigen" should use isSymmetric(x) and take advantage for (almost) symmetric matrices.

tol

a given tolerance used to check if x is computationally singular when method = "hybrid_Eigen_Ward".

do.sparseMsg

logical allowing a message about sparse to dense coercion; setting it FALSE suppresses that message.

preconditioning

a string specifying which implementation of Ward(1977) should be used when method = "Ward77".

Details

The exponential of a matrix is defined as the infinite Taylor series

e^M = \sum_{k = 1}^\infty \frac{M^k}{k!}.

For the "Pade" and "Taylor" methods, there is an "accuracy" attribute of the result. It is an upper bound for the L2 norm of the Cauchy error expm(x, *, order + 10) - expm(x, *, order).

Currently, mostly algorithms which are R-code only” accept sparse matrices (see the "sparseMatrix" class in package Matrix). Their method names are available from .methSparse.

Similarly only some of the algorithms are available for complex (number) matrices; the corresponding methods are in .methComplex.

Value

The matrix exponential of x.

Note

For a good general discussion of the matrix exponential problem, see Moler and van Loan (2003).

Author(s)

The "Ward77" method:
Vincent Goulet vincent.goulet@act.ulaval.ca, and Christophe Dutang, based on code translated by Doug Bates and Martin Maechler from the implementation of the corresponding Octave function contributed by A. Scottedward Hodel A.S.Hodel@eng.auburn.edu.

The "PadeRBS" method:
Roger B. Sidje, see the EXPOKIT reference.

The "PadeO" and "TaylorO" methods:
Marina Shapira (U Oxford, UK) and David Firth (U Warwick, UK);

The "Pade" and "Taylor" methods are slight modifications of the "*O" ([O]riginal versions) methods, by Martin Maechler, using BLAS and LINPACK where possible.

The "hybrid_Eigen_Ward" method by Christophe Dutang is a C translation of "R_Eigen" method by Martin Maechler.

The "Higham08" and "Higham08.b" (current default) were written by Michael Stadelmann, see expm.Higham08.

The "AlMohy-Hi09" implementation (R code interfacing to stand-alone C) was provided and donated by Drew Schmidt, U. Tennesse.

References

Ward, R. C. (1977). Numerical computation of the matrix exponential with accuracy estimate. SIAM J. Num. Anal. 14, 600–610.

Roger B. Sidje (1998). EXPOKIT: Software package for computing matrix exponentials. ACM - Transactions on Mathematical Software 24(1), 130–156.

Moler, C and van Loan, C (2003). Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review 45, 3–49. At \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1137/S00361445024180")}

Awad H. Al-Mohy and Nicholas J. Higham (2009) A New Scaling and Squaring Algorithm for the Matrix Exponential. SIAM. J. Matrix Anal. & Appl., 31(3), 970–989. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1137/S00361445024180")}

See Also

The package vignette for details on the algorithms and calling the function from external packages.

expm.Higham08 for "Higham08".

expAtv(A,v,t) computes e^{At} v (for scalar t and n-vector v) directly and more efficiently than computing e^{At}.

Examples

x <- matrix(c(-49, -64, 24, 31), 2, 2)
expm(x)
expm(x, method = "AlMohy-Hi09")
## ----------------------------
## Test case 1 from Ward (1977)
## ----------------------------
test1 <- t(matrix(c(
    4, 2, 0,
    1, 4, 1,
    1, 1, 4), 3, 3))
expm(test1, method="Pade")
## Results on Power Mac G3 under Mac OS 10.2.8
##                    [,1]               [,2]               [,3]
## [1,] 147.86662244637000 183.76513864636857  71.79703239999643
## [2,] 127.78108552318250 183.76513864636877  91.88256932318409
## [3,] 127.78108552318204 163.67960172318047 111.96810624637124
## -- these agree with ward (1977, p608)

## Compare with the naive "R_Eigen" method:
try(
expm(test1, method="R_Eigen")
) ## platform depently, sometimes gives an error from solve
## or is accurate or one older result was
##                   [,1]                [,2]               [,3]
##[1,] 147.86662244637003  88.500223574029647 103.39983337000028
##[2,] 127.78108552318220 117.345806155250600  90.70416537273444
##[3,] 127.78108552318226  90.384173332156763 117.66579819582827
## -- hopelessly inaccurate in all but the first column.
##
## ----------------------------
## Test case 2 from Ward (1977)
## ----------------------------
test2 <- t(matrix(c(
    29.87942128909879, .7815750847907159, -2.289519314033932,
    .7815750847907159, 25.72656945571064,  8.680737820540137,
   -2.289519314033932, 8.680737820540137,  34.39400925519054),
           3, 3))
expm(test2, method="Pade")
##                   [,1]               [,2]               [,3]
##[1,]   5496313853692357 -18231880972009844 -30475770808580828
##[2,] -18231880972009852  60605228702227024 101291842930256144
##[3,] -30475770808580840 101291842930256144 169294411240859072
## -- which agrees with Ward (1977) to 13 significant figures
expm(test2, method="R_Eigen")
##                   [,1]               [,2]               [,3]
##[1,]   5496313853692405 -18231880972009100 -30475770808580196
##[2,] -18231880972009160  60605228702221760 101291842930249376
##[3,] -30475770808580244 101291842930249200 169294411240850880
## -- in this case a very similar degree of accuracy.
##
## ----------------------------
## Test case 3 from Ward (1977)
## ----------------------------
test3 <- t(matrix(c(
    -131, 19, 18,
    -390, 56, 54,
    -387, 57, 52), 3, 3))
expm(test3, method="Pade")
##                    [,1]                [,2]                [,3]
##[1,] -1.5096441587713636 0.36787943910439874 0.13533528117301735
##[2,] -5.6325707997970271 1.47151775847745725 0.40600584351567010
##[3,] -4.9349383260294299 1.10363831731417195 0.54134112675653534
## -- agrees to 10dp with Ward (1977), p608.
expm(test3, method="R_Eigen")
##                   [,1]               [,2]                [,3]
##[1,] -1.509644158796182 0.3678794391103086 0.13533528117547022
##[2,] -5.632570799902948 1.4715177585023838 0.40600584352641989
##[3,] -4.934938326098410 1.1036383173309319 0.54134112676302582
## -- in this case, a similar level of agreement with Ward (1977).
##
## ----------------------------
## Test case 4 from Ward (1977)
## ----------------------------
test4 <-
    structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-10,
                1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 1, 0),
    .Dim = c(10, 10))
attributes(expm(test4, method="Pade"))
max(abs(expm(test4, method="Pade") - expm(test4, method="R_Eigen")))
##[1] 8.746826694186494e-08
## -- here mexp2 is accurate only to 7 d.p., whereas mexp
##    is correct to at least 14 d.p.
##
## Note that these results are achieved with the default
## settings order=8, method="Pade" -- accuracy could
## presumably be improved still further by some tuning
## of these settings.

##
## example of computationally singular matrix -> is nil-potent -> expm(m) = polynomial(m)
##
m <- matrix(c(0,1,0,0), 2,2)
try(
expm(m, method="R_Eigen")
)
## error since m is computationally singular
(em <- expm(m, method="hybrid"))
## hybrid use the Ward77 method
I2 <- diag(2)
stopifnot(all.equal(I2 + m, expm(m)))

## Try all methods --------------------------------------
(meths <- eval(formals(expm)$method)) # >= 13 ..

all3 <- sapply(meths, simplify = FALSE, function(mtd)
    tryCatch(expm(test3, method = mtd), error = conditionMessage))
## are all "equal" :
stopifnot(
    vapply(all3[-1], function(R) all.equal(all3[[1]], R, check.attributes=FALSE), NA))

all4 <- sapply(meths, simplify = FALSE, function(mtd)
    tryCatch(expm(test4, method = mtd), error = conditionMessage))

### Try complex matrices --c--c--c--c--c--c--c--c--c--c--c--c--c--c--c
.methComplex
zm <- m*(1+1i) # is also nilpotent :
stopifnot(zm %*% zm == 0, # is nilpotent already for ^2  ==> expm() is linear %
          all.equal(I2 + zm, expm(zm)))

## --->> more tests in ../tests/{ex,ex2,exact-ex}.R 

expm documentation built on Sept. 11, 2024, 8:58 p.m.