glmm.hp | R Documentation |
Hierarchical Partitioning of Marginal R2 for Generalized Mixed-Effect Models
glmm.hp(mod, type = "adjR2", commonality = FALSE)
mod |
Fitted lme4,nlme,glmmTMB,glm or lm model objects. |
type |
The type of R-square of lm, either "R2" or "adjR2", in which "R2" is unadjusted R-square and "adjR2" is adjusted R-square, the default is "adjR2". The adjusted R-square is calculated using Ezekiel's formula (Ezekiel 1930) for lm. |
commonality |
Logical; If TRUE, the result of commonality analysis (2^N-1 fractions for N predictors) is shown, the default is FALSE. |
This function conducts hierarchical partitioning to calculate the individual contributions of each predictor towards total (marginal) R2 for Generalized Linear Mixed-effect Model (including lm,glm and glmm). The marginal R2 is the output of r.squaredGLMM in MuMIn package for glm and glmm.
r.squaredGLMM |
The R2 for the full model. |
hierarchical.partitioning |
A matrix containing individual effects and percentage of individual effects towards total (marginal) R2 for each predictor. |
Jiangshan Lai lai@njfu.edu.cn
Lai J.,Zhu W., Cui D.,Mao L.(2023)Extension of the glmm.hp package to Zero-Inflated generalized linear mixed models and multiple regression.Journal of Plant Ecology,16(6):rtad038<DOI:10.1093/jpe/rtad038>
Lai J.,Zou Y., Zhang S.,Zhang X.,Mao L.(2022)glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models.Journal of Plant Ecology,15(6):1302-1307<DOI:10.1093/jpe/rtac096>
Lai J.,Zou Y., Zhang J.,Peres-Neto P.(2022) Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package.Methods in Ecology and Evolution,13(4):782-788<DOI:10.1111/2041-210X.13800>
Chevan, A. & Sutherland, M. (1991). Hierarchical partitioning. American Statistician, 45, 90-96. doi:10.1080/00031305.1991.10475776
Nimon, K., Oswald, F.L. & Roberts, J.K. (2013). Yhat: Interpreting regression effects. R package version 2.0.0.
Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133-142.
Nakagawa, S., Johnson, P. C., & Schielzeth, H. (2017). The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of the Royal Society Interface, 14(134), 20170213.
Ezekiel, M. (1930) Methods of Correlational Analysis. Wiley, New York.
library(MuMIn)
library(lme4)
mod1 <- lmer(Sepal.Length ~ Petal.Length + Petal.Width+(1|Species),data = iris)
r.squaredGLMM(mod1)
glmm.hp(mod1)
a <- glmm.hp(mod1)
plot(a)
mod2 <- glm(Sepal.Length ~ Petal.Length + Petal.Width, data = iris)
r.squaredGLMM(mod2)
glmm.hp(mod2)
b <- glmm.hp(mod2)
plot(b)
plot(glmm.hp(mod2))
mod3 <- lm(Sepal.Length ~ Petal.Length + Petal.Width + Petal.Length:Petal.Width, data = iris)
glmm.hp(mod3,type="R2")
glmm.hp(mod3,commonality=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.