Nothing
#' Hierarchical Partitioning of Marginal R2 for Generalized Mixed-Effect Models
#' @param mod Fitted lme4,nlme,glmmTMB,glm or lm model objects.
#' @param type The type of R-square of lm, either "R2" or "adjR2", in which "R2" is unadjusted R-square and "adjR2" is adjusted R-square, the default is "adjR2". The adjusted R-square is calculated using Ezekiel's formula (Ezekiel 1930) for lm.
#' @param commonality Logical; If TRUE, the result of commonality analysis (2^N-1 fractions for N predictors) is shown, the default is FALSE.
#' @details This function conducts hierarchical partitioning to calculate the individual contributions of each predictor towards total (marginal) R2 for Generalized Linear Mixed-effect Model (including lm,glm and glmm). The marginal R2 is the output of r.squaredGLMM in MuMIn package for glm and glmm.
#' @return \item{r.squaredGLMM}{The R2 for the full model.}
#' @return \item{hierarchical.partitioning}{A matrix containing individual effects and percentage of individual effects towards total (marginal) R2 for each predictor.}
#' @author {Jiangshan Lai} \email{lai@njfu.edu.cn}
#' @references
#' \itemize{
#' \item Lai J.,Zhu W., Cui D.,Mao L.(2023)Extension of the glmm.hp package to Zero-Inflated generalized linear mixed models and multiple regression.Journal of Plant Ecology,16(6):rtad038<DOI:10.1093/jpe/rtad038>
#' \item Lai J.,Zou Y., Zhang S.,Zhang X.,Mao L.(2022)glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models.Journal of Plant Ecology,15(6):1302-1307<DOI:10.1093/jpe/rtac096>
#' \item Lai J.,Zou Y., Zhang J.,Peres-Neto P.(2022) Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package.Methods in Ecology and Evolution,13(4):782-788<DOI:10.1111/2041-210X.13800>
#' \item Chevan, A. & Sutherland, M. (1991). Hierarchical partitioning. American Statistician, 45, 90-96. doi:10.1080/00031305.1991.10475776
#' \item Nimon, K., Oswald, F.L. & Roberts, J.K. (2013). Yhat: Interpreting regression effects. R package version 2.0.0.
#' \item Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133-142.
#' \item Nakagawa, S., Johnson, P. C., & Schielzeth, H. (2017). The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of the Royal Society Interface, 14(134), 20170213.
#' \item Ezekiel, M. (1930) Methods of Correlational Analysis. Wiley, New York.
#' }
#'@export
#'@examples
#'library(MuMIn)
#'library(lme4)
#'mod1 <- lmer(Sepal.Length ~ Petal.Length + Petal.Width+(1|Species),data = iris)
#'r.squaredGLMM(mod1)
#'glmm.hp(mod1)
#'a <- glmm.hp(mod1)
#'plot(a)
#'mod2 <- glm(Sepal.Length ~ Petal.Length + Petal.Width, data = iris)
#'r.squaredGLMM(mod2)
#'glmm.hp(mod2)
#'b <- glmm.hp(mod2)
#'plot(b)
#'plot(glmm.hp(mod2))
#'mod3 <- lm(Sepal.Length ~ Petal.Length + Petal.Width + Petal.Length:Petal.Width, data = iris)
#'glmm.hp(mod3,type="R2")
#'glmm.hp(mod3,commonality=TRUE)
glmm.hp <- function(mod,type = "adjR2",commonality = FALSE)
{
# initial checks
if (!inherits(mod, c("merMod","lme","glmmTMB","glm","lm","gam"))) stop("glmm.hp only supports lme, merMod, glmmTMB or glm objects at the moment")
if(inherits(mod, "merMod"))
{# interaction checks
Formu <- strsplit(as.character(mod@call$formula)[3],"")[[1]]
if("*"%in%Formu)stop("Please put the interaction term as a new variable (i.e. link variables by colon(:) ) and avoid the asterisk (*) in the original model")
varname <- strsplit(strsplit(as.character(mod@call$formula)[3],"(",fixed=T)[[1]][1]," ")[[1]]
ivname <- varname[seq(1,length(varname),2)]
}
if(inherits(mod, "lme"))
{# interaction checks
Formu <- strsplit(as.character(mod$call$fixed)[3],"")[[1]]
if("*"%in%Formu)stop("Please put the interaction term as a new variable (i.e. link variables by colon(:)) and avoid the asterisk (*) in the original model")
ivname <- strsplit(as.character(mod$call$fixed)[3]," + ",fixed=T)[[1]]
}
if(inherits(mod, "glmmTMB"))
{# interaction checks
Formu <- strsplit(as.character(mod$call$formula)[3],"")[[1]]
if("*"%in%Formu)stop("Please put the interaction term as a new variable (i.e. link variables by colon(:)) and avoid the asterisk (*) and colon(:) in the original model")
varname <- strsplit(strsplit(as.character(mod$call$formula)[3],"(",fixed=T)[[1]][1]," ")[[1]]
ivname <- varname[seq(1,length(varname),2)]
}
if(inherits(mod, c("glm","lm")))
{# interaction checks
Formu <- strsplit(as.character(mod$call$formula)[3],"")[[1]]
if("*"%in%Formu)stop("Please put the interaction term as a new variable (i.e. link variables by colon(:)) and avoid the asterisk (*) and colon(:) in the original model")
ivname <- attr(mod$terms, "term.labels")
}
iv.name <- ivname
nvar <- length(iv.name)
if (nvar < 2)
stop("Analysis not conducted. Insufficient number of predictors.")
totalN <- 2^nvar - 1
binarymx <- matrix(0, nvar, totalN)
for (i in 1:totalN) {
binarymx <- creatbin(i, binarymx)
}
outr2 <- r.squaredGLMM(mod)
if(inherits(mod, "lm")&!inherits(mod, "glm"))
{if(type=="adjR2")outr2 <- summary(mod)$adj.r.squared
if(type=="R2")outr2 <- summary(mod)$r.squared
}
r2type <- row.names(outr2)
nr2type <- length(r2type)
if(nr2type==0)
{nr2type <- 1
if(commonality)
{r2type <- 'commonality.analysis'}
else
{r2type <- 'hierarchical.partitioning'}
}
#ifelse(class(mod)=="merMod",dat <- eval(mod@call$data),dat <- eval(mod$call$data))
if(inherits(mod, "merMod"))
{dat <- eval(mod@call$data)
#if(sum(is.na(dat[,ivname]))>0){dat <- dat[-which(rowSums(is.na(dat[,ivname]))>0),]}
#dat <- na.omit(eval(mod@call$data))
if(!inherits(dat, "data.frame")){stop("Please change the name of data object in the original (g)lmm analysis then try again.")}
to_del <- paste(paste("-", iv.name, sep= ""), collapse = " ")
# reduced formula
modnull<- stats::update(stats::formula(mod), paste(". ~ . ", to_del, sep=""))
mod_null <- stats::update(object = mod, formula. = modnull, data = dat)
}
if(inherits(mod, "lme"))
{dat <- eval(mod$call$data)
mod_null <- stats::update(object = mod,data=dat,fixed=~1)
}
if(inherits(mod, c("glm","lm")))
{
dat <- eval(mod$call$data)
if(!inherits(dat, "data.frame")){stop("Please change the name of data object in the original (g)lmm analysis then try again.")}
va.set <- ivname
Formu <- strsplit(as.character(mod$call$formula)[3],"")[[1]]
if(":"%in%Formu){
va.set <- ivname[unlist(lapply(strsplit(ivname,""), function(x) !":"%in%x))]}
extracted <- if (!is.null(mod$offset)) {
sub(".*\\((.*)\\).*", "\\1", attr(mod$terms, "variables")[attr(mod$terms, "offset") + 1])
} else NULL
dat <- na.omit(dat[, c(as.character(mod$call$formula)[2], va.set, extracted)])
to_del <- paste(paste("-", iv.name, sep= ""), collapse = " ")
# reduced formula
modnull<- stats::update(stats::formula(mod), paste(". ~ . ", to_del, sep=""))
mod_null <- stats::update(object = mod, formula. = modnull, data = dat)
}
if(inherits(mod, "glmmTMB"))
{
dat <- eval(mod$call$data)
if(!inherits(dat, "data.frame")){stop("Please change the name of data object in the original (g)lmm analysis then try again.")}
va.set <- ivname
Formu <- strsplit(as.character(mod$call$formula)[3],"")[[1]]
if(":"%in%Formu){va.set <- ivname[unlist(lapply(strsplit(ivname,""), function(x) !":"%in%x))]}
#dat <- na.omit(dat[,c(as.character(mod$call$formula)[2],va.set)])
to_del <- paste(paste("-", iv.name, sep= ""), collapse = " ")
# reduced formula
modnull<- stats::update(stats::formula(mod), paste(". ~ . ", to_del, sep=""))
mod_null <- stats::update(object = mod, formula. = modnull, data = dat)
}
outputList <- list()
outputList[[1]] <- outr2
for (k in 1:nr2type)
{
commonM <- matrix(nrow = totalN, ncol = 3)
for (i in 1:totalN) {
tmp.name <- iv.name[as.logical(binarymx[, i])]
if(inherits(mod, "merMod")|inherits(mod, "glmmTMB"))
{to_add <- paste(paste("+", tmp.name, sep= ""), collapse = " ")
modname <- stats::update(stats::formula(mod_null), paste(". ~ . ", to_add, sep=""))
modnew <- stats::update(object = mod_null, formula. = modname, data = dat)
commonM[i, 2] <- MuMIn::r.squaredGLMM(modnew)[k,1]
}
if(inherits(mod, "lme"))
{to_add <- paste("~",paste(tmp.name,collapse = " + "),sep=" ")
modnew <- stats::update(object = mod_null, data = dat,fixed=to_add)
commonM[i, 2] <- MuMIn::r.squaredGLMM(modnew)[k,1]
}
if(inherits(mod, "glm"))
{ to_add <- paste("~", paste(c(tmp.name, if (!is.null(mod$offset)) as.character(attr(mod$terms, "variables")[attr(mod$terms, "offset") + 1])), collapse = " + "))
modnew <- stats::update(object = mod_null, data = dat, formula = as.formula(to_add))
commonM[i, 2] <- MuMIn::r.squaredGLMM(modnew)[k,1]
}
if(inherits(mod, "lm")&!inherits(mod, "glm"))
{to_add <- paste("~",paste(tmp.name,collapse = " + "),sep=" ")
modnew <- stats::update(object = mod_null, data = dat,to_add)
if(type=="adjR2")commonM[i, 2] <- summary(modnew)$adj.r.squared
if(type=="R2")commonM[i, 2] <- summary(modnew)$r.squared
}
}
commonlist <- vector("list", totalN)
seqID <- vector()
for (i in 1:nvar) {
seqID[i] = 2^(i-1)
}
for (i in 1:totalN) {
bit <- binarymx[1, i]
if (bit == 1)
ivname <- c(0, -seqID[1])
else ivname <- seqID[1]
for (j in 2:nvar) {
bit <- binarymx[j, i]
if (bit == 1) {
alist <- ivname
blist <- genList(ivname, -seqID[j])
ivname <- c(alist, blist)
}
else ivname <- genList(ivname, seqID[j])
}
ivname <- ivname * -1
commonlist[[i]] <- ivname
}
for (i in 1:totalN) {
r2list <- unlist(commonlist[i])
numlist <- length(r2list)
ccsum <- 0
for (j in 1:numlist) {
indexs <- r2list[[j]]
indexu <- abs(indexs)
if (indexu != 0) {
ccvalue <- commonM[indexu, 2]
if (indexs < 0)
ccvalue <- ccvalue * -1
ccsum <- ccsum + ccvalue
}
}
commonM[i, 3] <- ccsum
}
orderList <- vector("list", totalN)
index <- 0
for (i in 1:nvar) {
for (j in 1:totalN) {
nbits <- sum(binarymx[, j])
if (nbits == i) {
index <- index + 1
commonM[index, 1] <- j
}
}
}
outputcommonM <- matrix(nrow = totalN + 1, ncol = 2)
totalRSquare <- sum(commonM[, 3])
for (i in 1:totalN) {
outputcommonM[i, 1] <- round(commonM[commonM[i,
1], 3], digits = 4)
outputcommonM[i, 2] <- round((commonM[commonM[i,
1], 3]/totalRSquare) * 100, digits = 2)
}
outputcommonM[totalN + 1, 1] <- round(totalRSquare,
digits = 4)
outputcommonM[totalN + 1, 2] <- round(100, digits = 4)
rowNames <- NULL
for (i in 1:totalN) {
ii <- commonM[i, 1]
nbits <- sum(binarymx[, ii])
cbits <- 0
if (nbits == 1)
rowName <- "Unique to "
else rowName <- "Common to "
for (j in 1:nvar) {
if (binarymx[j, ii] == 1) {
if (nbits == 1)
rowName <- paste(rowName, iv.name[j], sep = "")
else {
cbits <- cbits + 1
if (cbits == nbits) {
rowName <- paste(rowName, "and ", sep = "")
rowName <- paste(rowName, iv.name[j], sep = "")
}
else {
rowName <- paste(rowName, iv.name[j], sep = "")
rowName <- paste(rowName, ", ", sep = "")
}
}
}
}
rowNames <- c(rowNames, rowName)
}
rowNames <- c(rowNames, "Total")
rowNames <- format.default(rowNames, justify = "left")
colNames <- format.default(c("Fractions", " % Total"),
justify = "right")
dimnames(outputcommonM) <- list(rowNames, colNames)
VariableImportance <- matrix(nrow = nvar, ncol = 4)
# VariableImportance <- matrix(nrow = nvar, ncol = 2)
for (i in 1:nvar) {
VariableImportance[i, 3] <- round(sum(binarymx[i, ] * (commonM[,3]/apply(binarymx,2,sum))), digits = 4)
#VariableImportance[i, 1] <- round(sum(binarymx[i, ] * (commonM[,3]/apply(binarymx,2,sum))), digits = 4)
}
VariableImportance[,1] <- outputcommonM[1:nvar,1]
VariableImportance[,2] <- VariableImportance[,3]-VariableImportance[,1]
total=round(sum(VariableImportance[,3]),digits = 4)
#total=round(sum(VariableImportance[,1]),digits = 4)
VariableImportance[, 4] <- round(100*VariableImportance[, 3]/total,2)
#VariableImportance[, 2] <- round(100*VariableImportance[, 1]/total,2)
#dimnames(VariableImportance) <- list(iv.name, c("Individual","I.perc(%)"))
dimnames(VariableImportance) <- list(iv.name, c("Unique","Average.share","Individual","I.perc(%)"))
if(commonality)
{outputList[[k+1]]<-outputcommonM}
else
{outputList[[k+1]]<-VariableImportance}
}
names(outputList) <- c("r.squaredGLMM",r2type)
if(inherits(mod, "lm")&!inherits(mod, "glm")){names(outputList) <- c("Total.R2",r2type)}
outputList$variables <- iv.name
if(commonality){outputList$type="commonality.analysis"}
if(!commonality){outputList$type="hierarchical.partitioning"}
class(outputList) <- "glmmhp" # Class definition
outputList
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.