as.h2o | R Documentation |
Import R object to the H2O cluster.
as.h2o(x, destination_frame = "", ...)
## Default S3 method:
as.h2o(x, destination_frame = "", ...)
## S3 method for class 'H2OFrame'
as.h2o(x, destination_frame = "", ...)
## S3 method for class 'data.frame'
as.h2o(x, destination_frame = "", use_datatable = TRUE, ...)
## S3 method for class 'Matrix'
as.h2o(x, destination_frame = "", use_datatable = TRUE, ...)
x |
An |
destination_frame |
A string with the desired name for the H2OFrame |
... |
arguments passed to method arguments. |
use_datatable |
allow usage of data.table |
Method as.h2o.data.frame
will use fwrite
if data.table package is installed in required version.
To speedup execution time for large sparse matrices, use h2o datatable. Make sure you have installed and imported data.table and slam packages. Turn on h2o datatable by options("h2o.use.data.table"=TRUE)
https://h2o.ai/blog/2016/fast-csv-writing-for-r/
use.package
## Not run:
library(h2o)
h2o.init()
iris_hf <- as.h2o(iris)
euro_hf <- as.h2o(euro)
letters_hf <- as.h2o(letters)
state_hf <- as.h2o(state.x77)
iris_hf_2 <- as.h2o(iris_hf)
stopifnot(is.h2o(iris_hf), dim(iris_hf) == dim(iris),
is.h2o(euro_hf), dim(euro_hf) == c(length(euro), 1L),
is.h2o(letters_hf), dim(letters_hf) == c(length(letters), 1L),
is.h2o(state_hf), dim(state_hf) == dim(state.x77),
is.h2o(iris_hf_2), dim(iris_hf_2) == dim(iris_hf))
if (requireNamespace("Matrix", quietly=TRUE)) {
data <- rep(0, 100)
data[(1:10) ^ 2] <- 1:10 * pi
m <- matrix(data, ncol = 20, byrow = TRUE)
m <- Matrix::Matrix(m, sparse = TRUE)
m_hf <- as.h2o(m)
stopifnot(is.h2o(m_hf), dim(m_hf) == dim(m))
}
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.