h2o.aggregator | R Documentation |
Builds an Aggregated Frame of an H2OFrame.
h2o.aggregator(
training_frame,
x,
model_id = NULL,
ignore_const_cols = TRUE,
target_num_exemplars = 5000,
rel_tol_num_exemplars = 0.5,
transform = c("NONE", "STANDARDIZE", "NORMALIZE", "DEMEAN", "DESCALE"),
categorical_encoding = c("AUTO", "Enum", "OneHotInternal", "OneHotExplicit", "Binary",
"Eigen", "LabelEncoder", "SortByResponse", "EnumLimited"),
save_mapping_frame = FALSE,
num_iteration_without_new_exemplar = 500,
export_checkpoints_dir = NULL
)
training_frame |
Id of the training data frame. |
x |
A vector containing the |
model_id |
Destination id for this model; auto-generated if not specified. |
ignore_const_cols |
|
target_num_exemplars |
Targeted number of exemplars Defaults to 5000. |
rel_tol_num_exemplars |
Relative tolerance for number of exemplars (e.g, 0.5 is +/- 50 percents) Defaults to 0.5. |
transform |
Transformation of training data Must be one of: "NONE", "STANDARDIZE", "NORMALIZE", "DEMEAN", "DESCALE". Defaults to NORMALIZE. |
categorical_encoding |
Encoding scheme for categorical features Must be one of: "AUTO", "Enum", "OneHotInternal", "OneHotExplicit", "Binary", "Eigen", "LabelEncoder", "SortByResponse", "EnumLimited". Defaults to AUTO. |
save_mapping_frame |
|
num_iteration_without_new_exemplar |
The number of iterations to run before aggregator exits if the number of exemplars collected didn't change Defaults to 500. |
export_checkpoints_dir |
Automatically export generated models to this directory. |
## Not run:
library(h2o)
h2o.init()
df <- h2o.createFrame(rows = 100,
cols = 5,
categorical_fraction = 0.6,
integer_fraction = 0,
binary_fraction = 0,
real_range = 100,
integer_range = 100,
missing_fraction = 0)
target_num_exemplars = 1000
rel_tol_num_exemplars = 0.5
encoding = "Eigen"
agg <- h2o.aggregator(training_frame = df,
target_num_exemplars = target_num_exemplars,
rel_tol_num_exemplars = rel_tol_num_exemplars,
categorical_encoding = encoding)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.