h2o.ddply | R Documentation |
For each subset of an H2O data set, apply a user-specified function, then combine the results. This is an experimental feature based on plyr::ddply.
h2o.ddply(X, .variables, FUN, ..., .progress = "none")
X |
An H2OFrame object to be processed. |
.variables |
Variables to split |
FUN |
Function to apply to each subset grouping. |
... |
Additional arguments passed on to |
.progress |
Name of the progress bar to use. #TODO: (Currently unimplemented) |
Returns an H2OFrame object containing the results from the split/apply operation, arranged
## Not run:
library(h2o)
h2o.init()
# Import iris dataset to H2O
iris_hf <- as.h2o(iris)
# Add function taking mean of Sepal.Length column
fun <- function(df) { sum(df[, 1], na.rm = TRUE) / nrow(df) }
# Apply function to groups by flower specie
# uses h2o's ddply, since iris_hf is an H2OFrame object
res <- h2o.ddply(iris_hf, "Species", fun)
head(res)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.