| h2o.prcomp | R Documentation | 
Principal components analysis of an H2O data frame using the power method to calculate the singular value decomposition of the Gram matrix.
h2o.prcomp(
  training_frame,
  x,
  model_id = NULL,
  validation_frame = NULL,
  ignore_const_cols = TRUE,
  score_each_iteration = FALSE,
  transform = c("NONE", "STANDARDIZE", "NORMALIZE", "DEMEAN", "DESCALE"),
  pca_method = c("GramSVD", "Power", "Randomized", "GLRM"),
  pca_impl = c("MTJ_EVD_DENSEMATRIX", "MTJ_EVD_SYMMMATRIX", "MTJ_SVD_DENSEMATRIX",
    "JAMA"),
  k = 1,
  max_iterations = 1000,
  use_all_factor_levels = FALSE,
  compute_metrics = TRUE,
  impute_missing = FALSE,
  seed = -1,
  max_runtime_secs = 0,
  export_checkpoints_dir = NULL
)
| training_frame | Id of the training data frame. | 
| x | A vector containing the  | 
| model_id | Destination id for this model; auto-generated if not specified. | 
| validation_frame | Id of the validation data frame. | 
| ignore_const_cols | 
 | 
| score_each_iteration | 
 | 
| transform | Transformation of training data Must be one of: "NONE", "STANDARDIZE", "NORMALIZE", "DEMEAN", "DESCALE". Defaults to NONE. | 
| pca_method | Specify the algorithm to use for computing the principal components: GramSVD - uses a distributed computation of the Gram matrix, followed by a local SVD; Power - computes the SVD using the power iteration method (experimental); Randomized - uses randomized subspace iteration method; GLRM - fits a generalized low-rank model with L2 loss function and no regularization and solves for the SVD using local matrix algebra (experimental) Must be one of: "GramSVD", "Power", "Randomized", "GLRM". Defaults to GramSVD. | 
| pca_impl | Specify the implementation to use for computing PCA (via SVD or EVD): MTJ_EVD_DENSEMATRIX - eigenvalue decompositions for dense matrix using MTJ; MTJ_EVD_SYMMMATRIX - eigenvalue decompositions for symmetric matrix using MTJ; MTJ_SVD_DENSEMATRIX - singular-value decompositions for dense matrix using MTJ; JAMA - eigenvalue decompositions for dense matrix using JAMA. References: JAMA - http://math.nist.gov/javanumerics/jama/; MTJ - https://github.com/fommil/matrix-toolkits-java/ Must be one of: "MTJ_EVD_DENSEMATRIX", "MTJ_EVD_SYMMMATRIX", "MTJ_SVD_DENSEMATRIX", "JAMA". | 
| k | Rank of matrix approximation Defaults to 1. | 
| max_iterations | Maximum training iterations Defaults to 1000. | 
| use_all_factor_levels | 
 | 
| compute_metrics | 
 | 
| impute_missing | 
 | 
| seed | Seed for random numbers (affects certain parts of the algo that are stochastic and those might or might not be enabled by default). Defaults to -1 (time-based random number). | 
| max_runtime_secs | Maximum allowed runtime in seconds for model training. Use 0 to disable. Defaults to 0. | 
| export_checkpoints_dir | Automatically export generated models to this directory. | 
an object of class H2ODimReductionModel.
N. Halko, P.G. Martinsson, J.A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions[http://arxiv.org/abs/0909.4061]. SIAM Rev., Survey and Review section, Vol. 53, num. 2, pp. 217-288, June 2011.
h2o.svd, h2o.glrm
## Not run: 
library(h2o)
h2o.init()
australia_path <- system.file("extdata", "australia.csv", package = "h2o")
australia <- h2o.uploadFile(path = australia_path)
h2o.prcomp(training_frame = australia, k = 8, transform = "STANDARDIZE")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.