h2o.std_coef_plot | R Documentation |
Plot a GLM model's standardized coefficient magnitudes.
h2o.std_coef_plot(model, num_of_features = NULL)
model |
A trained generalized linear model |
num_of_features |
The number of features to be shown in the plot |
h2o.varimp_plot
for variable importances plot of
random forest, GBM, deep learning.
## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(prostate_path)
prostate[, 2] <- as.factor(prostate[, 2])
prostate_glm <- h2o.glm(y = "CAPSULE", x = c("AGE", "RACE", "PSA", "DCAPS"),
training_frame = prostate, family = "binomial",
nfolds = 0, alpha = 0.5, lambda_search = FALSE)
h2o.std_coef_plot(prostate_glm)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.