Description Usage Arguments Details Value Note Author(s) References See Also Examples
Produces a (half-)normal plot from a fitted model object for a range of different models. Extendable to non-implemented model classes.
1 2 3 4 |
object |
fitted model object or numeric vector. |
sim |
number of simulations used to compute envelope. Default is 99. |
conf |
confidence level of the simulated envelope. Default is 0.95. |
resid.type |
type of residuals to be used; must be one of "deviance", "pearson", "response", "working", "simple", "student", or "standard". Not all model type and residual type combinations are allowed. Defaults are "student" for |
maxit |
maximum number of iterations of the estimation algorithm. Defaults are 25 for |
halfnormal |
logical. If |
scale |
logical. If |
plot.sim |
logical. Should the (half-)normal plot be plotted? Default is |
verb.sim |
logical. If |
warn |
logical. If |
how.many.out |
logical. If |
print.on |
logical. If |
paint.out |
logical. If |
col.paint.out |
If |
newclass |
logical. If |
diagfun |
user-defined function used to obtain the diagnostic measures from the fitted model object (only used when |
simfun |
user-defined function used to simulate a random sample from the model estimated parameters (only used when |
fitfun |
user-defined function used to re-fit the model to simulated data (only used when |
... |
extra graphical arguments passed to |
A relatively easy way to assess goodness-of-fit of a fitted model is to use (half-)normal plots of a model diagnostic, e.g., different types of residuals, Cook's distance, leverage. These plots are obtained by plotting the ordered absolute values of a model diagnostic versus the expected order statistic of a half-normal distribution,
Φ^{-1}(\frac{i+n-1/8}{2*n+1/2})
(for a half-normal plot) or the normal distribution,
Φ^{-1}(\frac{i+3/8}{n+1/4})
(for a normal plot).
Atkinson (1985) proposed the addition of a simulated envelope, which is such that under the correct model the plot for the observed data is likely to fall within the envelope. The objective is not to provide a region of acceptance, but some sort of guidance to what kind of shape to expect.
Obtaining the simulated envelope is simple and consists of (1) fitting a model; (2) extracting model diagnostics and calculating sorted absolute values; (3) simulating 99 (or more) response variables using the same model matrix, error distribution and fitted parameters; (4) fitting the same model to each simulated response variable and obtaining the same model diagnostics, again sorted absolute values; (5) computing the desired percentiles (e.g., 2.5 and 97.5) at each value of the expected order statistic to form the envelope.
This function handles different model classes and more will be implemented as time goes by. So far, the following models are included:
Continuous data: | |
Normal: | functions lm , aov and glm with family=gaussian |
Gamma: | function glm with family=Gamma |
Inverse gaussian: | function glm with family=inverse.gaussian |
Proportion data: | |
Binomial: | function glm with family=binomial |
Quasi-binomial: | function glm with family=quasibinomial |
Beta-binomial: | package VGAM - function vglm , with family=betabinomial ; |
package aods3 - function aodml , with family="bb" ; |
|
package gamlss - function gamlss , with family=BB ; |
|
package glmmADMB - function glmmadmb , with family="betabinomial" |
|
Zero-inflated binomial: | package VGAM - function vglm , with family=zibinomial ; |
package gamlss - function gamlss , with family=ZIBI ; |
|
package glmmADMB - function glmmadmb , with family="binomial" |
|
and zeroInfl=TRUE |
|
Zero-inflated beta-binomial: | package gamlss - function gamlss , with family=ZIBB ; |
package glmmADMB - function glmmadmb , with family="betabinomial" |
|
and zeroInfl=TRUE |
|
Multinomial: | package nnet - function multinom |
Count data: | |
Poisson: | function glm with family=poisson |
Quasi-Poisson: | function glm with family=quasipoisson |
Negative binomial: | package MASS - function glm.nb ; |
package aods3 - function aodml , with family="nb" |
|
and phi.scale="inverse" |
|
Zero-inflated Poisson: | package pscl - function zeroinfl , with dist="poisson" |
Zero-inflated negative binomial: | package pscl - function zeroinfl , with dist="negbin" |
Hurdle Poisson: | package pscl - function hurdle , with dist="poisson" |
Hurdle negative binomial: | package pscl - function hurdle , with dist="negbin" |
Mixed models: | |
Linear mixed models: | package lme4 , function lmer |
Generalized linear mixed models: | package lme4 , function glmer with family=poisson or binomial |
Users can also use a numeric vector as object
and hnp
will generate the (half-)normal plot with a simulated envelope using the standard normal distribution (scale=F
) or N(mu,sigma^2) (scale=T
).
Implementing a new model class is done by providing three functions to hnp
: diagfun
- to obtain model diagnostics, simfun
- to simulate random variables and fitfun
- to refit the model to simulated variables. The way these functions must be written is shown in the Examples section.
hnp
returns an object of class "hnp"
, which is a list containing the following components:
x |
quantiles of the (half-)normal distribution |
lower |
lower envelope band |
median |
median envelope band |
upper |
upper envelope band |
residuals |
diagnostic measures in absolute value and in order |
out.index |
vector indicating which points are out of the envelope |
col.paint.out |
color of points which are outside of the envelope (used if |
how.many.out |
logical. Equals |
total |
length of the diagnostic measure vector |
out |
number of points out of the envelope |
print.on |
logical. Equals |
paint.out |
logical. Equals |
all.sim |
matrix with all diagnostics obtained in the simulations. Each column represents one simulation |
See documentation on example data sets for simple analyses and goodness-of-fit checking using hnp
.
Rafael A. Moral <rafael_moral@yahoo.com.br>, John Hinde and Clarice G. B. Demétrio
Moral, R. A., Hinde, J. and Demétrio, C. G. B. (2017) Half-normal plots and overdispersed models in R: the hnp package. Journal of Statistical Software 81(10):1-23.
Atkinson, A. C. (1985) Plots, transformations and regression, Clarendon Press, Oxford.
Demétrio, C. G. B. and Hinde, J. (1997) Half-normal plots and overdispersion. GLIM Newsletter 27:19-26.
Hinde, J. and Demétrio, C. G. B. (1998) Overdispersion: models and estimation. Computational Statistics and Data Analysis 27:151-170.
Demétrio, C. G. B., Hinde, J. and Moral, R. A. (2014) Models for overdispersed data in entomology. In Godoy, W. A. C. and Ferreira, C. P. (Eds.) Ecological modelling applied to entomology. Springer.
plot.hnp
, cbb
, chryso
, corn
, fungi
, oil
, progeny
, wolbachia
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 | ## Simple Poisson regression
set.seed(100)
counts <- c(rpois(5, 2), rpois(5, 4), rpois(5, 6), rpois(5, 8))
treatment <- gl(4, 5)
fit <- glm(counts ~ treatment, family=poisson)
anova(fit, test="Chisq")
## half-normal plot
hnp(fit)
## or save it in an object and then use the plot method
my.hnp <- hnp(fit, print.on=TRUE, plot=FALSE)
plot(my.hnp)
## changing graphical parameters
plot(my.hnp, lty=2, pch=4, cex=1.2)
plot(my.hnp, lty=c(2,3,2), pch=4, cex=1.2, col=c(2,2,2,1))
plot(my.hnp, main="Half-normal plot", xlab="Half-normal scores",
ylab="Deviance residuals", legpos="bottomright")
## Using a numeric vector
my.vec <- rnorm(20, 4, 4)
hnp(my.vec) # using N(0,1)
hnp(my.vec, scale=TRUE) # using N(mu, sigma^2)
## Implementing new classes
## Users provide three functions - diagfun, simfun and fitfun,
## in the following way:
##
## diagfun <- function(obj) {
## userfunction(obj, other_argumens)
## # e.g., resid(obj, type="pearson")
## }
##
## simfun <- function(n, obj) {
## userfunction(n, other_arguments) # e.g., rpois(n, fitted(obj))
## }
##
## fitfun <- function(y.) {
## userfunction(y. ~ linear_predictor, other_arguments, data=data)
## # e.g., glm(y. ~ block + factor1 * factor2, family=poisson,
## # data=mydata)
## }
##
## when response is binary:
## fitfun <- function(y.) {
## userfunction(cbind(y., m-y.) ~ linear_predictor,
## other_arguments, data=data)
## #e.g., glm(cbind(y., m-y.) ~ treatment - 1,
## # family=binomial, data=data)
## }
## Not run:
## Example no. 1: Using Cook's distance as a diagnostic measure
y <- rpois(30, lambda=rep(c(.5, 1.5, 5), each=10))
tr <- gl(3, 10)
fit1 <- glm(y ~ tr, family=poisson)
# diagfun
d.fun <- function(obj) cooks.distance(obj)
# simfun
s.fun <- function(n, obj) {
lam <- fitted(obj)
rpois(n, lambda=lam)
}
# fitfun
my.data <- data.frame(y, tr)
f.fun <- function(y.) glm(y. ~ tr, family=poisson, data=my.data)
# hnp call
hnp(fit1, newclass=TRUE, diagfun=d.fun, simfun=s.fun, fitfun=f.fun)
## Example no. 2: Implementing gamma model using package gamlss
# load package
require(gamlss)
# model fitting
y <- rGA(30, mu=rep(c(.5, 1.5, 5), each=10), sigma=.5)
tr <- gl(3, 10)
fit2 <- gamlss(y ~ tr, family=GA)
# diagfun
d.fun <- function(obj) resid(obj) # this is the default if no
# diagfun is provided
# simfun
s.fun <- function(n, obj) {
mu <- obj$mu.fv
sig <- obj$sigma.fv
rGA(n, mu=mu, sigma=sig)
}
# fitfun
my.data <- data.frame(y, tr)
f.fun <- function(y.) gamlss(y. ~ tr, family=GA, data=my.data)
# hnp call
hnp(fit2, newclass=TRUE, diagfun=d.fun, simfun=s.fun,
fitfun=f.fun, data=data.frame(y, tr))
## Example no. 3: Implementing binomial model in gamlss
# model fitting
y <- rBI(30, bd=50, mu=rep(c(.2, .5, .9), each=10))
m <- 50
tr <- gl(3, 10)
fit3 <- gamlss(cbind(y, m-y) ~ tr, family=BI)
# diagfun
d.fun <- function(obj) resid(obj)
# simfun
s.fun <- function(n, obj) {
mu <- obj$mu.fv
bd <- obj$bd
rBI(n, bd=bd, mu=mu)
}
# fitfun
my.data <- data.frame(y, tr, m)
f.fun <- function(y.) gamlss(cbind(y., m-y.) ~ tr,
family=BI, data=my.data)
# hnp call
hnp(fit3, newclass=TRUE, diagfun=d.fun, simfun=s.fun, fitfun=f.fun)
## End(Not run)
|
Loading required package: MASS
Analysis of Deviance Table
Model: poisson, link: log
Response: counts
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 19 39.752
treatment 3 30.43 16 9.323 1.121e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Poisson model
Poisson model
Half-normal plot with simulated envelope generated assuming the residuals are
normally distributed under the null hypothesis.
Half-normal plot with simulated envelope generated assuming the residuals are
normally distributed under the null hypothesis.
Estimated mean: 3.360678
Estimated variance: 12.67925
Loading required package: gamlss
Loading required package: splines
Loading required package: gamlss.data
Loading required package: gamlss.dist
Loading required package: nlme
Loading required package: parallel
********** GAMLSS Version 5.1-2 **********
For more on GAMLSS look at http://www.gamlss.org/
Type gamlssNews() to see new features/changes/bug fixes.
GAMLSS-RS iteration 1: Global Deviance = 70.338
GAMLSS-RS iteration 2: Global Deviance = 70.338
GAMLSS-RS iteration 1: Global Deviance = 49.6386
GAMLSS-RS iteration 2: Global Deviance = 49.6386
GAMLSS-RS iteration 1: Global Deviance = 62.7893
GAMLSS-RS iteration 2: Global Deviance = 62.7893
GAMLSS-RS iteration 1: Global Deviance = 75.0953
GAMLSS-RS iteration 2: Global Deviance = 75.0953
GAMLSS-RS iteration 1: Global Deviance = 54.6353
GAMLSS-RS iteration 2: Global Deviance = 54.6353
GAMLSS-RS iteration 1: Global Deviance = 64.3118
GAMLSS-RS iteration 2: Global Deviance = 64.3118
GAMLSS-RS iteration 1: Global Deviance = 62.2811
GAMLSS-RS iteration 2: Global Deviance = 62.2811
GAMLSS-RS iteration 1: Global Deviance = 44.5703
GAMLSS-RS iteration 2: Global Deviance = 44.5703
GAMLSS-RS iteration 1: Global Deviance = 51.3957
GAMLSS-RS iteration 2: Global Deviance = 51.3957
GAMLSS-RS iteration 1: Global Deviance = 63.1949
GAMLSS-RS iteration 2: Global Deviance = 63.1949
GAMLSS-RS iteration 1: Global Deviance = 73.5997
GAMLSS-RS iteration 2: Global Deviance = 73.5997
GAMLSS-RS iteration 1: Global Deviance = 73.5247
GAMLSS-RS iteration 2: Global Deviance = 73.5247
GAMLSS-RS iteration 1: Global Deviance = 69.6304
GAMLSS-RS iteration 2: Global Deviance = 69.6304
GAMLSS-RS iteration 1: Global Deviance = 78.5506
GAMLSS-RS iteration 2: Global Deviance = 78.5506
GAMLSS-RS iteration 1: Global Deviance = 65.1351
GAMLSS-RS iteration 2: Global Deviance = 65.1351
GAMLSS-RS iteration 1: Global Deviance = 60.8973
GAMLSS-RS iteration 2: Global Deviance = 60.8973
GAMLSS-RS iteration 1: Global Deviance = 58.2045
GAMLSS-RS iteration 2: Global Deviance = 58.2045
GAMLSS-RS iteration 1: Global Deviance = 55.71
GAMLSS-RS iteration 2: Global Deviance = 55.71
GAMLSS-RS iteration 1: Global Deviance = 37.9664
GAMLSS-RS iteration 2: Global Deviance = 37.9664
GAMLSS-RS iteration 1: Global Deviance = 71.3821
GAMLSS-RS iteration 2: Global Deviance = 71.3821
GAMLSS-RS iteration 1: Global Deviance = 77.8963
GAMLSS-RS iteration 2: Global Deviance = 77.8963
GAMLSS-RS iteration 1: Global Deviance = 60.9955
GAMLSS-RS iteration 2: Global Deviance = 60.9955
GAMLSS-RS iteration 1: Global Deviance = 45.579
GAMLSS-RS iteration 2: Global Deviance = 45.579
GAMLSS-RS iteration 1: Global Deviance = 59.431
GAMLSS-RS iteration 2: Global Deviance = 59.431
GAMLSS-RS iteration 1: Global Deviance = 75.4688
GAMLSS-RS iteration 2: Global Deviance = 75.4688
GAMLSS-RS iteration 1: Global Deviance = 46.5143
GAMLSS-RS iteration 2: Global Deviance = 46.5143
GAMLSS-RS iteration 1: Global Deviance = 75.0105
GAMLSS-RS iteration 2: Global Deviance = 75.0105
GAMLSS-RS iteration 1: Global Deviance = 58.4968
GAMLSS-RS iteration 2: Global Deviance = 58.4968
GAMLSS-RS iteration 1: Global Deviance = 81.5422
GAMLSS-RS iteration 2: Global Deviance = 81.5422
GAMLSS-RS iteration 1: Global Deviance = 61.8046
GAMLSS-RS iteration 2: Global Deviance = 61.8046
GAMLSS-RS iteration 1: Global Deviance = 65.7101
GAMLSS-RS iteration 2: Global Deviance = 65.7101
GAMLSS-RS iteration 1: Global Deviance = 55.8205
GAMLSS-RS iteration 2: Global Deviance = 55.8205
GAMLSS-RS iteration 1: Global Deviance = 51.2587
GAMLSS-RS iteration 2: Global Deviance = 51.2587
GAMLSS-RS iteration 1: Global Deviance = 67.9337
GAMLSS-RS iteration 2: Global Deviance = 67.9337
GAMLSS-RS iteration 1: Global Deviance = 70.374
GAMLSS-RS iteration 2: Global Deviance = 70.374
GAMLSS-RS iteration 1: Global Deviance = 71.8968
GAMLSS-RS iteration 2: Global Deviance = 71.8968
GAMLSS-RS iteration 1: Global Deviance = 74.3043
GAMLSS-RS iteration 2: Global Deviance = 74.3043
GAMLSS-RS iteration 1: Global Deviance = 48.7273
GAMLSS-RS iteration 2: Global Deviance = 48.7273
GAMLSS-RS iteration 1: Global Deviance = 78.2913
GAMLSS-RS iteration 2: Global Deviance = 78.2913
GAMLSS-RS iteration 1: Global Deviance = 62.408
GAMLSS-RS iteration 2: Global Deviance = 62.408
GAMLSS-RS iteration 1: Global Deviance = 64.443
GAMLSS-RS iteration 2: Global Deviance = 64.443
GAMLSS-RS iteration 1: Global Deviance = 70.6256
GAMLSS-RS iteration 2: Global Deviance = 70.6256
GAMLSS-RS iteration 1: Global Deviance = 56.6855
GAMLSS-RS iteration 2: Global Deviance = 56.6855
GAMLSS-RS iteration 1: Global Deviance = 63.3335
GAMLSS-RS iteration 2: Global Deviance = 63.3335
GAMLSS-RS iteration 1: Global Deviance = 79.7926
GAMLSS-RS iteration 2: Global Deviance = 79.7926
GAMLSS-RS iteration 1: Global Deviance = 51.2723
GAMLSS-RS iteration 2: Global Deviance = 51.2723
GAMLSS-RS iteration 1: Global Deviance = 64.2482
GAMLSS-RS iteration 2: Global Deviance = 64.2482
GAMLSS-RS iteration 1: Global Deviance = 69.4916
GAMLSS-RS iteration 2: Global Deviance = 69.4916
GAMLSS-RS iteration 1: Global Deviance = 49.7801
GAMLSS-RS iteration 2: Global Deviance = 49.7801
GAMLSS-RS iteration 1: Global Deviance = 83.6285
GAMLSS-RS iteration 2: Global Deviance = 83.6285
GAMLSS-RS iteration 1: Global Deviance = 72.1972
GAMLSS-RS iteration 2: Global Deviance = 72.1972
GAMLSS-RS iteration 1: Global Deviance = 47.3143
GAMLSS-RS iteration 2: Global Deviance = 47.3143
GAMLSS-RS iteration 1: Global Deviance = 62.6432
GAMLSS-RS iteration 2: Global Deviance = 62.6432
GAMLSS-RS iteration 1: Global Deviance = 88.1662
GAMLSS-RS iteration 2: Global Deviance = 88.1662
GAMLSS-RS iteration 1: Global Deviance = 69.7228
GAMLSS-RS iteration 2: Global Deviance = 69.7228
GAMLSS-RS iteration 1: Global Deviance = 76.7393
GAMLSS-RS iteration 2: Global Deviance = 76.7393
GAMLSS-RS iteration 1: Global Deviance = 66.008
GAMLSS-RS iteration 2: Global Deviance = 66.008
GAMLSS-RS iteration 1: Global Deviance = 66.8624
GAMLSS-RS iteration 2: Global Deviance = 66.8624
GAMLSS-RS iteration 1: Global Deviance = 83.9569
GAMLSS-RS iteration 2: Global Deviance = 83.9569
GAMLSS-RS iteration 1: Global Deviance = 67.7432
GAMLSS-RS iteration 2: Global Deviance = 67.7432
GAMLSS-RS iteration 1: Global Deviance = 60.4655
GAMLSS-RS iteration 2: Global Deviance = 60.4655
GAMLSS-RS iteration 1: Global Deviance = 64.9151
GAMLSS-RS iteration 2: Global Deviance = 64.9151
GAMLSS-RS iteration 1: Global Deviance = 60.1031
GAMLSS-RS iteration 2: Global Deviance = 60.1031
GAMLSS-RS iteration 1: Global Deviance = 70.4794
GAMLSS-RS iteration 2: Global Deviance = 70.4794
GAMLSS-RS iteration 1: Global Deviance = 72.162
GAMLSS-RS iteration 2: Global Deviance = 72.162
GAMLSS-RS iteration 1: Global Deviance = 70.0347
GAMLSS-RS iteration 2: Global Deviance = 70.0347
GAMLSS-RS iteration 1: Global Deviance = 71.8012
GAMLSS-RS iteration 2: Global Deviance = 71.8012
GAMLSS-RS iteration 1: Global Deviance = 65.4826
GAMLSS-RS iteration 2: Global Deviance = 65.4826
GAMLSS-RS iteration 1: Global Deviance = 58.9921
GAMLSS-RS iteration 2: Global Deviance = 58.9921
GAMLSS-RS iteration 1: Global Deviance = 47.6986
GAMLSS-RS iteration 2: Global Deviance = 47.6986
GAMLSS-RS iteration 1: Global Deviance = 69.3959
GAMLSS-RS iteration 2: Global Deviance = 69.3959
GAMLSS-RS iteration 1: Global Deviance = 62.0146
GAMLSS-RS iteration 2: Global Deviance = 62.0146
GAMLSS-RS iteration 1: Global Deviance = 69.0488
GAMLSS-RS iteration 2: Global Deviance = 69.0488
GAMLSS-RS iteration 1: Global Deviance = 69.3584
GAMLSS-RS iteration 2: Global Deviance = 69.3584
GAMLSS-RS iteration 1: Global Deviance = 49.6307
GAMLSS-RS iteration 2: Global Deviance = 49.6307
GAMLSS-RS iteration 1: Global Deviance = 79.9691
GAMLSS-RS iteration 2: Global Deviance = 79.9691
GAMLSS-RS iteration 1: Global Deviance = 66.2107
GAMLSS-RS iteration 2: Global Deviance = 66.2107
GAMLSS-RS iteration 1: Global Deviance = 74.1087
GAMLSS-RS iteration 2: Global Deviance = 74.1087
GAMLSS-RS iteration 1: Global Deviance = 54.582
GAMLSS-RS iteration 2: Global Deviance = 54.582
GAMLSS-RS iteration 1: Global Deviance = 52.5192
GAMLSS-RS iteration 2: Global Deviance = 52.5192
GAMLSS-RS iteration 1: Global Deviance = 73.577
GAMLSS-RS iteration 2: Global Deviance = 73.577
GAMLSS-RS iteration 1: Global Deviance = 67.4348
GAMLSS-RS iteration 2: Global Deviance = 67.4348
GAMLSS-RS iteration 1: Global Deviance = 58.4658
GAMLSS-RS iteration 2: Global Deviance = 58.4658
GAMLSS-RS iteration 1: Global Deviance = 65.5043
GAMLSS-RS iteration 2: Global Deviance = 65.5043
GAMLSS-RS iteration 1: Global Deviance = 67.6032
GAMLSS-RS iteration 2: Global Deviance = 67.6032
GAMLSS-RS iteration 1: Global Deviance = 71.118
GAMLSS-RS iteration 2: Global Deviance = 71.118
GAMLSS-RS iteration 1: Global Deviance = 58.9473
GAMLSS-RS iteration 2: Global Deviance = 58.9473
GAMLSS-RS iteration 1: Global Deviance = 61.9704
GAMLSS-RS iteration 2: Global Deviance = 61.9704
GAMLSS-RS iteration 1: Global Deviance = 58.1423
GAMLSS-RS iteration 2: Global Deviance = 58.1423
GAMLSS-RS iteration 1: Global Deviance = 75.5422
GAMLSS-RS iteration 2: Global Deviance = 75.5422
GAMLSS-RS iteration 1: Global Deviance = 74.8513
GAMLSS-RS iteration 2: Global Deviance = 74.8513
GAMLSS-RS iteration 1: Global Deviance = 53.5539
GAMLSS-RS iteration 2: Global Deviance = 53.5539
GAMLSS-RS iteration 1: Global Deviance = 51.5939
GAMLSS-RS iteration 2: Global Deviance = 51.5939
GAMLSS-RS iteration 1: Global Deviance = 76.6603
GAMLSS-RS iteration 2: Global Deviance = 76.6603
GAMLSS-RS iteration 1: Global Deviance = 72.0876
GAMLSS-RS iteration 2: Global Deviance = 72.0876
GAMLSS-RS iteration 1: Global Deviance = 67.1662
GAMLSS-RS iteration 2: Global Deviance = 67.1662
GAMLSS-RS iteration 1: Global Deviance = 68.1357
GAMLSS-RS iteration 2: Global Deviance = 68.1357
GAMLSS-RS iteration 1: Global Deviance = 62.0032
GAMLSS-RS iteration 2: Global Deviance = 62.0032
GAMLSS-RS iteration 1: Global Deviance = 51.9242
GAMLSS-RS iteration 2: Global Deviance = 51.9242
GAMLSS-RS iteration 1: Global Deviance = 67.6385
GAMLSS-RS iteration 2: Global Deviance = 67.6385
GAMLSS-RS iteration 1: Global Deviance = 142.445
GAMLSS-RS iteration 2: Global Deviance = 142.445
GAMLSS-RS iteration 1: Global Deviance = 146.0183
GAMLSS-RS iteration 2: Global Deviance = 146.0183
GAMLSS-RS iteration 1: Global Deviance = 139.978
GAMLSS-RS iteration 2: Global Deviance = 139.978
GAMLSS-RS iteration 1: Global Deviance = 145.5484
GAMLSS-RS iteration 2: Global Deviance = 145.5484
GAMLSS-RS iteration 1: Global Deviance = 144.4861
GAMLSS-RS iteration 2: Global Deviance = 144.4861
GAMLSS-RS iteration 1: Global Deviance = 144.7136
GAMLSS-RS iteration 2: Global Deviance = 144.7136
GAMLSS-RS iteration 1: Global Deviance = 136.2759
GAMLSS-RS iteration 2: Global Deviance = 136.2759
GAMLSS-RS iteration 1: Global Deviance = 153.2467
GAMLSS-RS iteration 2: Global Deviance = 153.2467
GAMLSS-RS iteration 1: Global Deviance = 139.2379
GAMLSS-RS iteration 2: Global Deviance = 139.2379
GAMLSS-RS iteration 1: Global Deviance = 134.0985
GAMLSS-RS iteration 2: Global Deviance = 134.0985
GAMLSS-RS iteration 1: Global Deviance = 142.0257
GAMLSS-RS iteration 2: Global Deviance = 142.0257
GAMLSS-RS iteration 1: Global Deviance = 128.216
GAMLSS-RS iteration 2: Global Deviance = 128.216
GAMLSS-RS iteration 1: Global Deviance = 134.6136
GAMLSS-RS iteration 2: Global Deviance = 134.6136
GAMLSS-RS iteration 1: Global Deviance = 132.2147
GAMLSS-RS iteration 2: Global Deviance = 132.2147
GAMLSS-RS iteration 1: Global Deviance = 143.6439
GAMLSS-RS iteration 2: Global Deviance = 143.6439
GAMLSS-RS iteration 1: Global Deviance = 149.8976
GAMLSS-RS iteration 2: Global Deviance = 149.8976
GAMLSS-RS iteration 1: Global Deviance = 132.4189
GAMLSS-RS iteration 2: Global Deviance = 132.4189
GAMLSS-RS iteration 1: Global Deviance = 137.5186
GAMLSS-RS iteration 2: Global Deviance = 137.5186
GAMLSS-RS iteration 1: Global Deviance = 139.043
GAMLSS-RS iteration 2: Global Deviance = 139.043
GAMLSS-RS iteration 1: Global Deviance = 138.5819
GAMLSS-RS iteration 2: Global Deviance = 138.5819
GAMLSS-RS iteration 1: Global Deviance = 130.3707
GAMLSS-RS iteration 2: Global Deviance = 130.3707
GAMLSS-RS iteration 1: Global Deviance = 158.7694
GAMLSS-RS iteration 2: Global Deviance = 158.7694
GAMLSS-RS iteration 1: Global Deviance = 144.417
GAMLSS-RS iteration 2: Global Deviance = 144.417
GAMLSS-RS iteration 1: Global Deviance = 144.8647
GAMLSS-RS iteration 2: Global Deviance = 144.8647
GAMLSS-RS iteration 1: Global Deviance = 133.1535
GAMLSS-RS iteration 2: Global Deviance = 133.1535
GAMLSS-RS iteration 1: Global Deviance = 158.762
GAMLSS-RS iteration 2: Global Deviance = 158.762
GAMLSS-RS iteration 1: Global Deviance = 139.8287
GAMLSS-RS iteration 2: Global Deviance = 139.8287
GAMLSS-RS iteration 1: Global Deviance = 146.1165
GAMLSS-RS iteration 2: Global Deviance = 146.1165
GAMLSS-RS iteration 1: Global Deviance = 146.151
GAMLSS-RS iteration 2: Global Deviance = 146.151
GAMLSS-RS iteration 1: Global Deviance = 132.3584
GAMLSS-RS iteration 2: Global Deviance = 132.3584
GAMLSS-RS iteration 1: Global Deviance = 142.3326
GAMLSS-RS iteration 2: Global Deviance = 142.3326
GAMLSS-RS iteration 1: Global Deviance = 135.1846
GAMLSS-RS iteration 2: Global Deviance = 135.1846
GAMLSS-RS iteration 1: Global Deviance = 158.6723
GAMLSS-RS iteration 2: Global Deviance = 158.6723
GAMLSS-RS iteration 1: Global Deviance = 135.4198
GAMLSS-RS iteration 2: Global Deviance = 135.4198
GAMLSS-RS iteration 1: Global Deviance = 132.9159
GAMLSS-RS iteration 2: Global Deviance = 132.9159
GAMLSS-RS iteration 1: Global Deviance = 143.8727
GAMLSS-RS iteration 2: Global Deviance = 143.8727
GAMLSS-RS iteration 1: Global Deviance = 135.3703
GAMLSS-RS iteration 2: Global Deviance = 135.3703
GAMLSS-RS iteration 1: Global Deviance = 130.2431
GAMLSS-RS iteration 2: Global Deviance = 130.2431
GAMLSS-RS iteration 1: Global Deviance = 154.0567
GAMLSS-RS iteration 2: Global Deviance = 154.0567
GAMLSS-RS iteration 1: Global Deviance = 151.7925
GAMLSS-RS iteration 2: Global Deviance = 151.7925
GAMLSS-RS iteration 1: Global Deviance = 153.1577
GAMLSS-RS iteration 2: Global Deviance = 153.1577
GAMLSS-RS iteration 1: Global Deviance = 142.2882
GAMLSS-RS iteration 2: Global Deviance = 142.2882
GAMLSS-RS iteration 1: Global Deviance = 145.2743
GAMLSS-RS iteration 2: Global Deviance = 145.2743
GAMLSS-RS iteration 1: Global Deviance = 156.6035
GAMLSS-RS iteration 2: Global Deviance = 156.6035
GAMLSS-RS iteration 1: Global Deviance = 153.0664
GAMLSS-RS iteration 2: Global Deviance = 153.0664
GAMLSS-RS iteration 1: Global Deviance = 137.2799
GAMLSS-RS iteration 2: Global Deviance = 137.2799
GAMLSS-RS iteration 1: Global Deviance = 144.2358
GAMLSS-RS iteration 2: Global Deviance = 144.2358
GAMLSS-RS iteration 1: Global Deviance = 135.6286
GAMLSS-RS iteration 2: Global Deviance = 135.6286
GAMLSS-RS iteration 1: Global Deviance = 156.0447
GAMLSS-RS iteration 2: Global Deviance = 156.0447
GAMLSS-RS iteration 1: Global Deviance = 155.485
GAMLSS-RS iteration 2: Global Deviance = 155.485
GAMLSS-RS iteration 1: Global Deviance = 138.9901
GAMLSS-RS iteration 2: Global Deviance = 138.9901
GAMLSS-RS iteration 1: Global Deviance = 144.0765
GAMLSS-RS iteration 2: Global Deviance = 144.0765
GAMLSS-RS iteration 1: Global Deviance = 140.1216
GAMLSS-RS iteration 2: Global Deviance = 140.1216
GAMLSS-RS iteration 1: Global Deviance = 154.8097
GAMLSS-RS iteration 2: Global Deviance = 154.8097
GAMLSS-RS iteration 1: Global Deviance = 150.4456
GAMLSS-RS iteration 2: Global Deviance = 150.4456
GAMLSS-RS iteration 1: Global Deviance = 137.0094
GAMLSS-RS iteration 2: Global Deviance = 137.0094
GAMLSS-RS iteration 1: Global Deviance = 142.4653
GAMLSS-RS iteration 2: Global Deviance = 142.4653
GAMLSS-RS iteration 1: Global Deviance = 161.6731
GAMLSS-RS iteration 2: Global Deviance = 161.6731
GAMLSS-RS iteration 1: Global Deviance = 141.087
GAMLSS-RS iteration 2: Global Deviance = 141.087
GAMLSS-RS iteration 1: Global Deviance = 133.4353
GAMLSS-RS iteration 2: Global Deviance = 133.4353
GAMLSS-RS iteration 1: Global Deviance = 144.1005
GAMLSS-RS iteration 2: Global Deviance = 144.1005
GAMLSS-RS iteration 1: Global Deviance = 148.4537
GAMLSS-RS iteration 2: Global Deviance = 148.4537
GAMLSS-RS iteration 1: Global Deviance = 139.6583
GAMLSS-RS iteration 2: Global Deviance = 139.6583
GAMLSS-RS iteration 1: Global Deviance = 145.9598
GAMLSS-RS iteration 2: Global Deviance = 145.9598
GAMLSS-RS iteration 1: Global Deviance = 143.8283
GAMLSS-RS iteration 2: Global Deviance = 143.8283
GAMLSS-RS iteration 1: Global Deviance = 141.4765
GAMLSS-RS iteration 2: Global Deviance = 141.4765
GAMLSS-RS iteration 1: Global Deviance = 138.3281
GAMLSS-RS iteration 2: Global Deviance = 138.3281
GAMLSS-RS iteration 1: Global Deviance = 137.4648
GAMLSS-RS iteration 2: Global Deviance = 137.4648
GAMLSS-RS iteration 1: Global Deviance = 141.2079
GAMLSS-RS iteration 2: Global Deviance = 141.2079
GAMLSS-RS iteration 1: Global Deviance = 132.0084
GAMLSS-RS iteration 2: Global Deviance = 132.0084
GAMLSS-RS iteration 1: Global Deviance = 138.8554
GAMLSS-RS iteration 2: Global Deviance = 138.8554
GAMLSS-RS iteration 1: Global Deviance = 136.5733
GAMLSS-RS iteration 2: Global Deviance = 136.5733
GAMLSS-RS iteration 1: Global Deviance = 141.6205
GAMLSS-RS iteration 2: Global Deviance = 141.6205
GAMLSS-RS iteration 1: Global Deviance = 140.9606
GAMLSS-RS iteration 2: Global Deviance = 140.9606
GAMLSS-RS iteration 1: Global Deviance = 132.6981
GAMLSS-RS iteration 2: Global Deviance = 132.6981
GAMLSS-RS iteration 1: Global Deviance = 140.103
GAMLSS-RS iteration 2: Global Deviance = 140.103
GAMLSS-RS iteration 1: Global Deviance = 131.8618
GAMLSS-RS iteration 2: Global Deviance = 131.8618
GAMLSS-RS iteration 1: Global Deviance = 136.1863
GAMLSS-RS iteration 2: Global Deviance = 136.1863
GAMLSS-RS iteration 1: Global Deviance = 142.6953
GAMLSS-RS iteration 2: Global Deviance = 142.6953
GAMLSS-RS iteration 1: Global Deviance = 143.7413
GAMLSS-RS iteration 2: Global Deviance = 143.7413
GAMLSS-RS iteration 1: Global Deviance = 162.5236
GAMLSS-RS iteration 2: Global Deviance = 162.5236
GAMLSS-RS iteration 1: Global Deviance = 152.9845
GAMLSS-RS iteration 2: Global Deviance = 152.9845
GAMLSS-RS iteration 1: Global Deviance = 146.0983
GAMLSS-RS iteration 2: Global Deviance = 146.0983
GAMLSS-RS iteration 1: Global Deviance = 144.9088
GAMLSS-RS iteration 2: Global Deviance = 144.9088
GAMLSS-RS iteration 1: Global Deviance = 143.2483
GAMLSS-RS iteration 2: Global Deviance = 143.2483
GAMLSS-RS iteration 1: Global Deviance = 154.0586
GAMLSS-RS iteration 2: Global Deviance = 154.0586
GAMLSS-RS iteration 1: Global Deviance = 149.0875
GAMLSS-RS iteration 2: Global Deviance = 149.0875
GAMLSS-RS iteration 1: Global Deviance = 131.6215
GAMLSS-RS iteration 2: Global Deviance = 131.6215
GAMLSS-RS iteration 1: Global Deviance = 143.1584
GAMLSS-RS iteration 2: Global Deviance = 143.1584
GAMLSS-RS iteration 1: Global Deviance = 142.5994
GAMLSS-RS iteration 2: Global Deviance = 142.5994
GAMLSS-RS iteration 1: Global Deviance = 140.0903
GAMLSS-RS iteration 2: Global Deviance = 140.0903
GAMLSS-RS iteration 1: Global Deviance = 152.2458
GAMLSS-RS iteration 2: Global Deviance = 152.2458
GAMLSS-RS iteration 1: Global Deviance = 144.924
GAMLSS-RS iteration 2: Global Deviance = 144.924
GAMLSS-RS iteration 1: Global Deviance = 149.1011
GAMLSS-RS iteration 2: Global Deviance = 149.1011
GAMLSS-RS iteration 1: Global Deviance = 140.4613
GAMLSS-RS iteration 2: Global Deviance = 140.4613
GAMLSS-RS iteration 1: Global Deviance = 143.4972
GAMLSS-RS iteration 2: Global Deviance = 143.4972
GAMLSS-RS iteration 1: Global Deviance = 145.2543
GAMLSS-RS iteration 2: Global Deviance = 145.2543
GAMLSS-RS iteration 1: Global Deviance = 143.4959
GAMLSS-RS iteration 2: Global Deviance = 143.4959
GAMLSS-RS iteration 1: Global Deviance = 136.7692
GAMLSS-RS iteration 2: Global Deviance = 136.7692
GAMLSS-RS iteration 1: Global Deviance = 138.8718
GAMLSS-RS iteration 2: Global Deviance = 138.8718
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.