Description Usage Arguments Details Value Author(s) References Examples
Imputing missing values using the algorithm proposed by Josse and Husson (2013). The function is based on the imputePCA function of the R package missMDA.
1 | impute.PCA(tab, conditions, ncp.max=5)
|
tab |
A data matrix containing numeric and missing values. Each column of this matrix is assumed to correspond to an experimental sample, and each row to an identified peptide. |
conditions |
A vector of factors indicating the biological condition to which each sample belongs. |
ncp.max |
integer corresponding to the maximum number of components to test (used in the |
See Josse and Husson (2013) for the theory. It is built from functions proposed in the R package missMDA.
The input matrix tab
with imputed values instead of missing values.
Quentin Giai Gianetto <quentin2g@yahoo.fr>
Josse, J & Husson, F. (2013). Handling missing values in exploratory multivariate data analysis methods. Journal de la SFdS. 153 (2), pp. 79-99.
1 2 3 4 5 | #Simulating data
res.sim=sim.data(nb.pept=2000,nb.miss=600,nb.cond=2);
#Imputation of missing values with PCA
dat.pca=impute.PCA(tab=res.sim$dat.obs,conditions=res.sim$condition);
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.