waldtest | R Documentation |
Compute a Wald test for a linear hypothesis on the coefficients. Also supports Delta-approximation for non-linear hypotheses.
waldtest(
object,
R,
r,
type = c("default", "iid", "robust", "cluster"),
lhs = NULL,
df1,
df2
)
object |
object of class |
R |
matrix, character, formula, function, integer or logical. Specification of which exclusions to test. |
r |
numerical vector. |
type |
character. Error structure type. |
lhs |
character. Name of left hand side if multiple left hand sides. |
df1 |
integer. If you know better than the default df, specify it here. |
df2 |
integer. If you know better than the default df, specify it here. |
The function waldtest
computes a Wald test for the H0: R beta = r,
where beta is the estimated vector coef(object)
.
If R
is a character, integer, or logical vector it is assumed to
specify a matrix which merely picks out a subset of the coefficients for
joint testing. If r
is not specified, it is assumed to be a zero
vector of the appropriate length.
R
can also be a formula which is linear in the estimated
coefficients, e.g. of the type ~Q-2|x-2*z
which will test the joint
hypothesis Q=2 and x=2*z.
If R
is a function (of the coefficients), an approximate Wald test
against H0: R(beta) == 0
, using the Delta-method, is computed.
In case of an IV-estimation, the names for the endogenous variables in
coef(object)
are of the type "
Q(fit)"
which is a bit dull to
type; if all the endogenous variables are to be tested they can be specified
as "endovars"
. It is also possible to specify an endogenous variable
simply as "Q"
, and waldtest
will add the other syntactic sugar
to obtain "
Q(fit)"
.
The type
argument works as follows. If type=='default'
it is
assumed that the residuals are i.i.d., unless a cluster structure was
specified to felm()
. If type=='robust'
, a heteroscedastic
structure is assumed, even if a cluster structure was specified in
felm()
.
The function waldtest
computes and returns a named numeric
vector containing the following elements.
p
is the p-value for the Chi^2-test
chi2
is the Chi^2-distributed statistic.
df1
is the degrees of
freedom for the Chi^2 statistic.
p.F
is the p-value for the F
statistics
F
is the F-distributed statistic.
df2
is the additional degrees of freedom for the F statistic.
The return value has an attribute 'formula'
which encodes the
restrictions.
nlexpect()
x <- rnorm(10000)
x2 <- rnorm(length(x))
y <- x - 0.2 * x2 + rnorm(length(x))
# Also works for lm
summary(est <- lm(y ~ x + x2))
# We do not reject the true values
waldtest(est, ~ x - 1 | x2 + 0.2 | `(Intercept)`)
# The Delta-method coincides when the function is linear:
waldtest(est, function(x) x - c(0, 1, -0.2))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.