R/waldtest.R

Defines functions Rtoform formtoR waldtest

Documented in waldtest

#' Compute Wald test for joint restrictions on coefficients
#'
#' Compute a Wald test for a linear hypothesis on the coefficients.  Also
#' supports Delta-approximation for non-linear hypotheses.
#'
#' The function `waldtest` computes a Wald test for the H0: R beta = r,
#' where beta is the estimated vector `coef(object)`.
#'
#' If `R` is a character, integer, or logical vector it is assumed to
#' specify a matrix which merely picks out a subset of the coefficients for
#' joint testing. If `r` is not specified, it is assumed to be a zero
#' vector of the appropriate length.
#'
#' `R` can also be a formula which is linear in the estimated
#' coefficients, e.g. of the type `~Q-2|x-2*z` which will test the joint
#' hypothesis Q=2 and x=2*z.
#'
#' If `R` is a function (of the coefficients), an approximate Wald test
#' against H0: `R(beta) == 0`, using the Delta-method, is computed.
#'
#' In case of an IV-estimation, the names for the endogenous variables in
#' `coef(object)` are of the type `"`Q(fit)`"` which is a bit dull to
#' type; if all the endogenous variables are to be tested they can be specified
#' as `"endovars"`. It is also possible to specify an endogenous variable
#' simply as `"Q"`, and `waldtest` will add the other syntactic sugar
#' to obtain `"`Q(fit)`"`.
#'
#' The `type` argument works as follows. If `type=='default'` it is
#' assumed that the residuals are i.i.d., unless a cluster structure was
#' specified to [felm()]. If `type=='robust'`, a heteroscedastic
#' structure is assumed, even if a cluster structure was specified in
#' [felm()].
#'
#' @param object object of class `"felm"`, a result of a call to
#' [felm()].
#' @param R matrix, character, formula, function, integer or logical.
#' Specification of which exclusions to test.
#' @param r numerical vector.
#' @param type character. Error structure type.
#' @param lhs character. Name of left hand side if multiple left hand sides.
#' @param df1 integer. If you know better than the default df, specify it here.
#' @param df2 integer. If you know better than the default df, specify it here.
#' @return The function `waldtest` computes and returns a named numeric
#' vector containing the following elements.
#'
#' \itemize{ \item `p` is the p-value for the Chi^2-test \item `chi2`
#' is the Chi^2-distributed statistic.  \item `df1` is the degrees of
#' freedom for the Chi^2 statistic.  \item `p.F` is the p-value for the F
#' statistics \item `F` is the F-distributed statistic.  \item `df2`
#' is the additional degrees of freedom for the F statistic. }
#'
#' The return value has an attribute `'formula'` which encodes the
#' restrictions.
#' @seealso [nlexpect()]
#' @examples
#'
#' x <- rnorm(10000)
#' x2 <- rnorm(length(x))
#' y <- x - 0.2 * x2 + rnorm(length(x))
#' # Also works for lm
#' summary(est <- lm(y ~ x + x2))
#' # We do not reject the true values
#' waldtest(est, ~ x - 1 | x2 + 0.2 | `(Intercept)`)
#' # The Delta-method coincides when the function is linear:
#' waldtest(est, function(x) x - c(0, 1, -0.2))
#'
#' @export waldtest
waldtest <- function(object, R, r, type = c("default", "iid", "robust", "cluster"), lhs = NULL, df1, df2) {
  if (inherits(object, "felm") && object$nostats) stop("No Wald test for objects created with felm(nostats=TRUE)")

  # We make a chi^2 to test whether the equation R theta = r holds.
  # The chi^2 is computed according to Wooldridge (5.34, 10.59).
  # I.e. a Wald test W = N*(beta' (R V^{-1} R')^{-1} beta) where beta = R theta - r
  # W is chi2 with length(r) df,
  # and V is th covariance matrix.

  # First, find V. It's in either object$vcv, object$robustvcv or object$clustervcv
  if (is.null(lhs) && length(object$lhs) > 1) {
    stop("Please specify lhs=[one of ", paste(object$lhs, collapse = ","), "]")
  }
  if (!is.null(lhs) && is.na(match(lhs, object$lhs))) {
    stop("Please specify lhs=[one of ", paste(object$lhs, collapse = ","), "]")
  }

  type <- type[1]
  if (identical(type, "default")) {
    if (is.null(object$clustervar)) {
      V <- vcov(object, type = "iid", lhs = lhs)
    } else {
      V <- vcov(object, type = "cluster", lhs = lhs)
    }
  } else {
    V <- vcov(object, type = type, lhs = lhs)
  }

  #  if(is.null(lhs) && length(object$lhs) == 1) lhs <- object$lhs
  cf <- coef(object)
  if (is.matrix(cf)) {
    nmc <- rownames(cf)
  } else {
    nmc <- names(cf)
  }

  if (inherits(R, "formula") || is.call(R) || is.name(R)) {
    Rr <- formtoR(R, nmc)
    R <- Rr[, -ncol(Rr), drop = FALSE]
    r <- Rr[, ncol(Rr)]
  } else if (is.function(R)) {
    # non-linear stuff. Compute value and gradient of R
    if (!requireNamespace("numDeriv", quietly = TRUE)) {
      warning("package numDeriv must be available to use non-linear Wald test")
      return(NULL)
    }
    pt <- coef(object, lhs = lhs)
    pt[is.na(pt)] <- 0
    val <- R(pt)
    if (is.null(dim(val))) dim(val) <- c(length(val), 1)
    gr <- numDeriv::jacobian(R, pt)
    if (is.null(dim(gr))) dim(gr) <- c(1, length(gr))
  } else if (!is.matrix(R)) {
    # it's not a matrix, so it's a list of parameters, either
    # names, logicals or indices
    if (is.null(R)) R <- nmc
    if (is.character(R)) {
      ev <- match("endovars", R)
      if (!is.na(ev)) {
        # replace with endogenous variables
        R <- c(R[-ev], object$endovars)
      }
      # did user specify any of the endogenous variables?
      fitvars <- paste("`", R, "(fit)`", sep = "")
      fitpos <- match(fitvars, nmc)
      # replace those which are not NA
      noNA <- which(!is.na(fitpos))
      R[noNA] <- fitvars[noNA]
      Ri <- match(R, nmc)
      if (anyNA(Ri)) stop("Couldn't find variables ", paste(R[is.na(Ri)], collapse = ","))
      R <- Ri
    } else if (is.logical(R)) {
      R <- which(R)
    }
    # here R is a list of positions of coefficients
    # make the projection matrix.

    RR <- matrix(0, length(R), length(coef(object, lhs = lhs)))
    for (i in seq_along(R)) {
      RR[i, R[i]] <- 1
    }
    R <- RR
  }
  # Two cases here. If R is a function, we do a non-linear delta test against 0, otherwise
  # we do the ordinary Wald test
  if (is.function(R)) {
    W <- as.numeric(t(val) %*% solve(gr %*% V %*% t(gr)) %*% val)
    if (missing(df1)) df1 <- length(val)
  } else {
    if (missing(r) || is.null(r)) {
      r <- rep(0, nrow(R))
    } else if (length(r) != nrow(R)) stop("nrow(R) != length(r)")
    cf <- coef(object, lhs = lhs)
    cf[is.na(cf)] <- 0
    beta <- R %*% cf - r
    V[is.na(V)] <- 0 # ignore NAs
    W <- try(sum(beta * solve(R %*% V %*% t(R), beta)), silent = TRUE)

    if (inherits(W, "try-error")) {
      W <- as.numeric(t(beta) %*% pinvx(R %*% V %*% t(R)) %*% beta)
    }
  }
  # W follows a chi2(Q) distribution, but the F-test has another
  # df which is ordinarily object$df. However, if there are clusters
  # the df should be reduced to the number of clusters-1
  if (missing(df2)) {
    df2 <- object$df
    if ((!is.null(object$clustervar) && type %in% c("default", "cluster"))) {
      min_clustvar <- min(vapply(seq_along(object$clustervar),
        function(i) nlevels(object$clustervar[[i]]),
        FUN.VALUE = integer(1)
      ))
      df2 <- min(min_clustvar - 1, df2)
    }
  }

  if (missing(df1)) {
    df1 <- length(beta)
  }

  F <- W / df1
  # F follows a F(df1,df2) distribution
  if (is.function(R)) frm <- R else frm <- Rtoform(R, r, nmc)

  structure(
    c(
      p = pchisq(W, df1, lower.tail = FALSE), chi2 = W, df1 = df1,
      p.F = pf(F, df1, df2, lower.tail = FALSE), F = F, df2 = df2
    ),
    formula = frm
  )
}

# convert a formula which is a set of linear combinations like ~x+x3 | x2-x4+3 to
# matrices R and r such that R %*% coefs = r
# the vector r is return as the last column of the result
formtoR <- function(formula, coefs) {
  conv <- function(f) formtoR(f, coefs)

  lf <- as.list(formula)
  if (lf[[1]] == as.name("~") || lf[[1]] == as.name("quote")) {
    return(conv(lf[[2]]))
  }
  # here we have a single formula w/o '~' in front, e.g. x+x3|x2-x4, or just x+x3
  # split off parts '|' in a loop
  R <- NULL
  #  if(length(lf) != 1) stop('length of ',lf, ' is != 1')
  #  lf <- as.list(lf[[1]])
  op <- lf[[1]]
  if (op == as.name("|")) {
    return(rbind(conv(lf[[2]]), conv(lf[[3]])))
  } else if (op == as.name("+")) {
    if (length(lf) == 2) {
      return(conv(lf[[2]]))
    } # unary +
    return(conv(lf[[2]]) + conv(lf[[3]]))
  } else if (op == as.name("-")) {
    if (length(lf) == 2) {
      return(-conv(lf[[2]]))
    } # unary -
    return(conv(lf[[2]]) - conv(lf[[3]]))
  } else if (op == as.name("*")) {
    f1 <- conv(lf[[2]])
    f2 <- conv(lf[[3]])
    # the first one must be a numeric, i.e. only last column filled in
    # and it's negative
    fac <- -f1[length(f1)]
    return(fac * conv(lf[[3]]))
  } else if (is.name(op)) {
    res <- matrix(0, 1, length(coefs) + 1)
    pos <- match(as.character(op), coefs)
    if (is.na(pos)) {
      ivspec <- paste("`", as.character(op), "(fit)`", sep = "")
      pos <- match(ivspec, coefs)
    }
    if (is.na(pos)) stop("Can't find ", op, " among coefficients ", paste(coefs, collapse = ","))
    res[pos] <- 1
    return(res)
  } else if (is.numeric(op)) {
    return(matrix(c(rep(0, length(coefs)), -op), 1))
  } else {
    stop("Unkwnown item ", as.character(op), " in formula ", formula)
  }
}

Rtoform <- function(R, r, coefs) {
  coefs <- gsub("`", "", coefs, fixed = TRUE)
  form <- paste("~", paste(apply(R, 1, function(row) {
    w <- which(row != 0)
    rw <- paste(" ", row[w], "*`", coefs[w], "`", collapse = " + ", sep = "")
    rw <- gsub("+ -", " - ", rw, fixed = TRUE)
    rw <- gsub(" 1*", "", rw, fixed = TRUE)
    rw <- gsub("(fit)", "", rw, fixed = TRUE)
    rw
  }), " + ", -r, collapse = "|", sep = ""))
  form <- gsub("+ -", "-", form, fixed = TRUE)
  form <- gsub(" 0.", " .", form, fixed = TRUE)
  form <- gsub("+ 0", "", form, fixed = TRUE)
  local(as.formula(form))
}

Try the lfe package in your browser

Any scripts or data that you put into this service are public.

lfe documentation built on May 29, 2024, 7:39 a.m.