| AUC.uno | R Documentation |
Uno's estimator of cumulative/dynamic AUC for right-censored time-to-event data
AUC.uno(Surv.rsp, Surv.rsp.new, lpnew, times, savesensspec=FALSE)
sens.uno(Surv.rsp, Surv.rsp.new, lpnew, times)
spec.uno(Surv.rsp.new, lpnew, times)
Surv.rsp |
A |
Surv.rsp.new |
A |
lpnew |
The vector of predictors obtained from the test data. |
times |
A vector of time points at which to evaluate AUC. |
savesensspec |
A logical specifying whether sensitivities and specificities should be saved. |
The sens.uno and spec.uno functions implement the estimators of
time-dependent true and false positive rates proposed in Section 5.1 of Uno et
al. (2007).
The AUC.uno function implements the estimator of cumulative/dynamic AUC
that is based on the TPR and FPR estimators proposed by
Uno et al. (2007). It is given by the area(s) under the time-dependent
ROC curve(s) estimated by sens.sh and spec.sh. The iauc
summary measure is given by the integral of AUC on
[0, max(times)] (weighted by the estimated probability density of
the time-to-event outcome).
Uno's estimators are based on inverse-probability-of-censoring
weights and do not assume a specific working model for deriving the predictor
lpnew. It is assumed, however, that there is a one-to-one
relationship between the predictor and the expected survival times conditional
on the predictor. Note that the estimators implemented in sens.uno,
spec.uno and AUC.uno are restricted to situations
where the random censoring assumption holds.
AUC.uno returns an object of class survAUC. Specifically,
AUC.uno returns a list with the following components:
auc |
The cumulative/dynamic AUC estimates (evaluated at |
times |
The vector of time points at which AUC is evaluated. |
iauc |
The summary measure of AUC. |
sens.uno and spec.uno return matrices of dimensions times x
(lpnew + 1). The elements of these matrices are the sensitivity and
specificity estimates for each threshold of lpnew and for each time point
specified in times.
Uno, H., T. Cai, L. Tian, and L. J. Wei (2007).
Evaluating prediction rules for
t-year survivors with censored regression models.
Journal of the American
Statistical Association 102, 527–537.
AUC.cd, AUC.sh, AUC.hc,
IntAUC
data(cancer,package="survival")
TR <- ovarian[1:16,]
TE <- ovarian[17:26,]
train.fit <- survival::coxph(survival::Surv(futime, fustat) ~ age,
x=TRUE, y=TRUE, method="breslow", data=TR)
lpnew <- predict(train.fit, newdata=TE)
Surv.rsp <- survival::Surv(TR$futime, TR$fustat)
Surv.rsp.new <- survival::Surv(TE$futime, TE$fustat)
times <- seq(10, 1000, 10)
AUC_Uno <- AUC.uno(Surv.rsp, Surv.rsp.new, lpnew, times)
names(AUC_Uno)
AUC_Uno$iauc
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.