nn_avg_pool3d | R Documentation |
In the simplest case, the output value of the layer with input size (N, C, D, H, W)
,
output (N, C, D_{out}, H_{out}, W_{out})
and kernel_size
(kD, kH, kW)
can be precisely described as:
nn_avg_pool3d(
kernel_size,
stride = NULL,
padding = 0,
ceil_mode = FALSE,
count_include_pad = TRUE,
divisor_override = NULL
)
kernel_size |
the size of the window |
stride |
the stride of the window. Default value is |
padding |
implicit zero padding to be added on all three sides |
ceil_mode |
when TRUE, will use |
count_include_pad |
when TRUE, will include the zero-padding in the averaging calculation |
divisor_override |
if specified, it will be used as divisor, otherwise |
\begin{array}{ll}
\mbox{out}(N_i, C_j, d, h, w) = & \sum_{k=0}^{kD-1} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1} \\
& \frac{\mbox{input}(N_i, C_j, \mbox{stride}[0] \times d + k, \mbox{stride}[1] \times h + m, \mbox{stride}[2] \times w + n)}{kD \times kH \times kW}
\end{array}
If padding
is non-zero, then the input is implicitly zero-padded on all three sides
for padding
number of points.
The parameters kernel_size
, stride
can either be:
a single int
– in which case the same value is used for the depth, height and width dimension
a tuple
of three ints – in which case, the first int
is used for the depth dimension,
the second int
for the height dimension and the third int
for the width dimension
Input: (N, C, D_{in}, H_{in}, W_{in})
Output: (N, C, D_{out}, H_{out}, W_{out})
, where
D_{out} = \left\lfloor\frac{D_{in} + 2 \times \mbox{padding}[0] -
\mbox{kernel\_size}[0]}{\mbox{stride}[0]} + 1\right\rfloor
H_{out} = \left\lfloor\frac{H_{in} + 2 \times \mbox{padding}[1] -
\mbox{kernel\_size}[1]}{\mbox{stride}[1]} + 1\right\rfloor
W_{out} = \left\lfloor\frac{W_{in} + 2 \times \mbox{padding}[2] -
\mbox{kernel\_size}[2]}{\mbox{stride}[2]} + 1\right\rfloor
if (torch_is_installed()) {
# pool of square window of size=3, stride=2
m <- nn_avg_pool3d(3, stride = 2)
# pool of non-square window
m <- nn_avg_pool3d(c(3, 2, 2), stride = c(2, 1, 2))
input <- torch_randn(20, 16, 50, 44, 31)
output <- m(input)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.