nn_max_pool1d | R Documentation |
Applies a 1D max pooling over an input signal composed of several input planes.
nn_max_pool1d(
kernel_size,
stride = NULL,
padding = 0,
dilation = 1,
return_indices = FALSE,
ceil_mode = FALSE
)
kernel_size |
the size of the window to take a max over |
stride |
the stride of the window. Default value is |
padding |
implicit zero padding to be added on both sides |
dilation |
a parameter that controls the stride of elements in the window |
return_indices |
if |
ceil_mode |
when |
In the simplest case, the output value of the layer with input size (N, C, L)
and output (N, C, L_{out})
can be precisely described as:
out(N_i, C_j, k) = \max_{m=0, \ldots, \mbox{kernel\_size} - 1}
input(N_i, C_j, stride \times k + m)
If padding
is non-zero, then the input is implicitly zero-padded on both sides
for padding
number of points. dilation
controls the spacing between the kernel points.
It is harder to describe, but this link
has a nice visualization of what dilation
does.
Input: (N, C, L_{in})
Output: (N, C, L_{out})
, where
L_{out} = \left\lfloor \frac{L_{in} + 2 \times \mbox{padding} - \mbox{dilation}
\times (\mbox{kernel\_size} - 1) - 1}{\mbox{stride}} + 1\right\rfloor
if (torch_is_installed()) {
# pool of size=3, stride=2
m <- nn_max_pool1d(3, stride = 2)
input <- torch_randn(20, 16, 50)
output <- m(input)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.