Description Usage Arguments Details Value Methods (by class) See Also Examples
Given an object with the data, it fits a ZINB model.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | zinbFit(Y, ...)
## S4 method for signature 'SummarizedExperiment'
zinbFit(
  Y,
  X,
  V,
  K,
  which_assay,
  commondispersion = TRUE,
  zeroinflation = TRUE,
  verbose = FALSE,
  nb.repeat.initialize = 2,
  maxiter.optimize = 25,
  stop.epsilon.optimize = 1e-04,
  BPPARAM = BiocParallel::bpparam(),
  ...
)
## S4 method for signature 'matrix'
zinbFit(
  Y,
  X,
  V,
  K,
  commondispersion = TRUE,
  zeroinflation = TRUE,
  verbose = FALSE,
  nb.repeat.initialize = 2,
  maxiter.optimize = 25,
  stop.epsilon.optimize = 1e-04,
  BPPARAM = BiocParallel::bpparam(),
  ...
)
## S4 method for signature 'dgCMatrix'
zinbFit(Y, ...)
 | 
| Y | The data (genes in rows, samples in columns). | 
| ... | Additional parameters to describe the model, see
 | 
| X | The design matrix containing sample-level covariates, one sample per row. If missing, X will contain only an intercept. If Y is a SummarizedExperiment object, X can be a formula using the variables in the colData slot of Y. | 
| V | The design matrix containing gene-level covariates, one gene per row. If missing, V will contain only an intercept. If Y is a SummarizedExperiment object, V can be a formula using the variables in the rowData slot of Y. | 
| K | integer. Number of latent factors. | 
| which_assay | numeric or character. Which assay of Y to use (only if Y is a SummarizedExperiment). | 
| commondispersion | Whether or not a single dispersion for all features is estimated (default TRUE). | 
| zeroinflation | Whether or not a ZINB model should be fitted. If FALSE, a negative binomial model is fitted instead. | 
| verbose | Print helpful messages. | 
| nb.repeat.initialize | Number of iterations for the initialization of beta_mu and gamma_mu. | 
| maxiter.optimize | maximum number of iterations for the optimization step (default 25). | 
| stop.epsilon.optimize | stopping criterion in the optimization step, when the relative gain in likelihood is below epsilon (default 0.0001). | 
| BPPARAM | object of class  | 
By default, i.e., if no arguments other than Y are passed,
the model is fitted with an intercept for the regression across-samples and
one intercept for the regression across genes, both for mu and for pi.
This means that by default the model is fitted with X_mu =
  X_pi = 1_n and V_mu = V_pi = 1_J. If the user explicitly passes the
design matrices, this behavior is overwritten, i.e., the user needs to
explicitly include the intercept in the design matrices.
If Y is a Summarized experiment, the function uses the assay named "counts", if any, or the first assay.
Currently, if Y is a sparseMatrix, this calls the zinbFit method on as.matrix(Y)
An object of class ZinbModel that has been fitted by penalized
maximum likelihood on the data.
SummarizedExperiment: Y is a
SummarizedExperiment.
matrix: Y is a matrix of counts (genes in rows).
dgCMatrix: Y is a sparse matrix of counts (genes in rows).
| 1 2 3 4 5 6 7 8 | se <- SummarizedExperiment(matrix(rpois(60, lambda=5), nrow=10, ncol=6),
                           colData = data.frame(bio = gl(2, 3)))
m <- zinbFit(se, X=model.matrix(~bio, data=colData(se)),
             BPPARAM=BiocParallel::SerialParam())
bio <- gl(2, 3)
m <- zinbFit(matrix(rpois(60, lambda=5), nrow=10, ncol=6),
             X=model.matrix(~bio), BPPARAM=BiocParallel::SerialParam())
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.