Description Usage Arguments Value Examples
This function performs the model selection and the parameter inference. x, g, Gibbs_init=30, Gibbs_iter=min(4000,(ncol(x)*400)), burnin=min(ncol(x)*400,4000), EM_init=25, EM_tol=10^(-3), nbcores=Gibbs_init
1 2 3 |
x |
data.frame, where each column is a factor. |
g |
integer, defines the number of components. |
Gibbs_init |
integer, number of chains performed for model selection (default 30). |
Gibbs_iter |
integer, number of iterations of the MCMC algorithm for model selection (default min(ncol(x)*400,4000)) |
burnin |
integer, number of iterations of the burn-in of the MCMC algorithm (default min(ncol(x)*400,4000)) |
EM_init |
integer, number of runs of EM algorithm for parameter inference (default 25) |
EM_tol |
numeric, tolerance for the stopping criterion of the EM algorithm (default 0.001) |
nbcores |
number of cores used by the algorithm (only for Linux and MAC). (default Gibbs_init) |
Returns an instance of the [CoModesResults
] class.
1 2 3 4 5 6 7 8 9 10 11 | ## Not run:
# Data Loading
data(alzheimer)
# Model selection and Parameter estimation for CMM with 2 components (8 MCMC chains are used for model selection)
results <- CoModescluster(alzheimer, 2, 8)
# Summary of the results
summary(results)
# Display the probabilities of the modes
barplot(results)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.