Description Details Author(s) References See Also
The CrossVal
package provides generic tools for performing
cross-validation on classification methods in the context of high-throughput
data sets such as those produced by gene expression microarrays. In order to
use a classifier with this implementation of cross-validation, you must first
prepare a pair of functions (one for learning models from training data, and
one for making predictions on test data). These functions, along with any
required meta-parameters, are used to create an object of the
Modeler-class
. That object is then passed to the
CrossVal
function along with the full training data set. The
full data set is then repeatedly split into its own training and test sets;
you can specify the fraction to be used for training and the number of
iterations. The result is a detailed look at the accuracy, sensitivity,
specificity, and positive and negative predictive value of the model, as
estimated by cross-validation.
Package: | CrossVal |
Type: | Package |
Version: | 1.0.1 |
Date: | 2012-05-04 |
License: | Artistic-2.0 |
LazyLoad: | yes |
Kevin R. Coombes krc@silicovore.com
Braga-Neto U, Dougherty ER.
Is cross-validation valid for small-sample microarray
classification?
Bioinformatics, 2004; 20:374–380.
Jiang W, Varma S, Simon R.
Calculating confidence intervals for
prediction error in microarray classification using resampling.
Stat Appl Genet Mol Biol. 2008; 7:Article8.
Fu LM, Youn ES.
Improving reliability of gene selection from
microarray functional genomics data.
IEEE Trans Inf Technol Biomed. 2003; 7:191–6.
Man MZ, Dyson G, Johnson K, Liao B.
Evaluating methods for classifying expression data.
J Biopharm Stat. 2004; 14:1065–84.
Fu WJ, Carroll RJ, Wang S.
Estimating misclassification error with small samples via
bootstrap cross-validation.
Bioinformatics, 2005; 21:1979–86.
Ancona N, Maglietta R, Piepoli A, D'Addabbo A, Cotugno R, Savino M,
Liuni S, Carella M, Pesole G, Perri F.
On the statistical assessment of classifiers using DNA
microarray data.
BMC Bioinformatics, 2006; 7:387.
Lecocke M, Hess K.
An empirical study of univariate and genetic
algorithm-based feature selection in binary classification with
microarray data.
Cancer Inform, 2007; 2:313–27.
Lee S.
Mistakes in validating the accuracy of a prediction classifier
in high-dimensional but small-sample microarray data.
Stat Methods Med Res, 2008; 17:635–42.
The following classification methods have been adapted to work within
the general cross-validation framework: K nearest neighbors
(learnKNN
), recursive partitioning and regression trees
(learnRPART
),
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.