Description Usage Arguments Details Value Author(s) References See Also Examples
View source: R/UniEstimation.r View source: R/Estimation.r
Estimates the expectile's extreme level corresponding to a quantile's extreme level.
1 2 |
alpha_n |
A real in (0,1) specifying the extreme level α_n for the quantile. See Details. |
data |
A vector of (1 x n) observations to be used to estimate the tail index in the case it is not provided. By default |
gammaHat |
A real specifying an estimate of the tail index. By default |
VarGamHat |
A real specifying an estimate of the variance of the tail index estimate. By default |
tailest |
A string specifying the type of tail index estimator to be used. By default |
k |
An integer specifying the value of the intermediate sequence k_n. See Details. |
var |
If |
varType |
A string specifying the asymptotic variance to compute. By default |
bigBlock |
An interger specifying the size of the big-block used to estimaste the asymptotic variance. See Details. |
smallBlock |
An interger specifying the size of the small-block used to estimaste the asymptotic variance. See Details. |
alpha |
A real in (0,1) specifying the confidence level (1-α)100\% of the approximate confidence interval for the expecile at the intermedite level. |
For a given extreme level α_n for the α_n-th quantile, an estimate of the extreme level τ_n'(α_n) is computed such that ξ_{τ_n'(α_n)}=q_{α_n}. The estimator is defined by
\hat{τ}_n'(α_n) = 1 - (1 - α_n)\frac{\hat{γ}_n}{1-\hat{γ}_n}
where \hat{γ}_n is a consistent estimator of the tail index γ. If a value for the parameter gammaHat
is given, then such a value is used to compute \hat{τ}_n'. If gammaHat
is NULL
and a dataset is provided through the parameter data
, then the tail index γ is estimated by a suitable estimator \hat{γ}_n. See Section 6 in Padoan and Stupfler (2020) for more details.
If VarGamHat
is specified, i.e. the variance of the tail index estimator, then the variance of the extreme level estimator \hat{τ}_n' is computed by using such value.
When estimating the tail index, if tailest='Hill'
then γ is estimated using the Hill estimator (see also HTailIndex). If tailest='ML'
then γ is estimated using the Maximum Likelihood estimator (see MLTailIndex).
If tailest='ExpBased'
then γ is estimated using the expectile based estimator (see EBTailIndex).
If tailest='Moment'
then γ is estimated using the moment based estimator (see MomTailIndex). See Padoan and Stupfler (2020) for details.
k
or k_n is the value of the so-called intermediate sequence k_n, n=1,2,.... Its represents a sequence of positive integers such that k_n -> ∞ and k_n/n -> 0 as n -> ∞. Practically, when tailest="Hill"
then the value k_n specifies the number of k
+1 larger order statistics to be used to estimate γ by the Hill estimator. See MLTailIndex, EBTailIndex and MomTailIndex for the other estimators.
If var=TRUE
then the asymptotic variance of the extreme level estimator is computed by applying the delta method, i.e.
Var(τ_n') = Var(\hat{γ}_n) * (α_n-1)^2 / (1-\hat{γ}_n)^4
where Var(\hat{γ}_n is provided by VarGamHat
or is estimated when esitmating the tail index through tailest='Hill'
and tailest='ML'
. See HTailIndex and MLTailIndex for details on how the variance is computed.
Given a small value α\in (0,1) then an asymptotic confidence interval for the extreme level, τ_n'(α_n), with approximate nominal confidence level (1-α)100\% is computed.
A list with elements:
tauHat
: an estimate of the extreme level τ_n';
tauVar
: an estimate of the asymptotic variance of the extreme level estimator \hat{τ}_n'(α_n);
tauCI
: an estimate of the approximate (1-α)100\% confidence interval for the extreme level τ_n'(α_n).
Simone Padoan, simone.padoan@unibocconi.it, http://mypage.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@ensai.fr, http://ensai.fr/en/equipe/stupfler-gilles/
Padoan A.S. and Stupfler, G. (2020). Extreme expectile estimation for heavy-tailed time series. arXiv e-prints arXiv:2004.04078, http://arxiv.org/abs/2004.04078.
Daouia, A., Girard, S. and Stupfler, G. (2018). Estimation of tail risk based on extreme expectiles. Journal of the Royal Statistical Society: Series B, 80, 263-292.
estExpectiles, predExpectiles, extQuantile
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | # Extreme level estimation for a given quantile's extreme level alpha_n
# obtained with 1-dimensional data simulated from an AR(1) with Student-t innovations
tsDist <- "studentT"
tsType <- "AR"
# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)
# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15
# quantile's extreme level
alpha_n <- 0.999
# sample size
ndata <- 2500
# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)
# expectile's extreme level estimation
tau1Hat <- estExtLevel(alpha_n, data, var=TRUE, k=150, bigBlock=bigBlock,
smallBlock=smallBlock)
tau1Hat
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.