Generate a Random Orthogonal Rotation

Description

Random orthogonal rotation to use as Tmat matrix to start GPForth or GPFoblq.

Usage

1
2

Arguments

k

An integer indicating the dimension of the square matrix.

Details

The random start function produces an orthogonal matrix with columns of length one based on the QR decompostion.

Value

An orthogonal matrix.

Author(s)

Coen A. Bernaards and Robert I. Jennrich with some R modifications by Paul Gilbert

See Also

GPForth, GPFoblq, oblimin

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
   Global.min <- function(A,method,B=10){
      fv <- rep(0,B)
      seeds <- sample(1e+7, B)
      for(i in 1:B){
    	cat(i," ")
    	set.seed(seeds[i])
    	gpout <- GPFoblq(A=A, Random.Start(ncol(A)), method=method)
    	dtab <- dim(gpout$Table)
    	fv[i] <- gpout$Table[dtab[1],2]
    	cat(fv[i], "\n")
      }
      cat("Min is ",min(fv),"\n")
      set.seed(seeds[order(fv)[1]])
      ans <- GPFoblq(A=A, Random.Start(ncol(A)), method=method)
      ans
      }

   data("Thurstone", package="GPArotation")

   Global.min(box26,"simplimax",10)