Description Details Slots Methods Note Author(s) See Also Examples
A class containing fitted parameters of a geostatistical model to be used to run predictions by regression-kriging. It comprises regression model (e.g. a GLM), variogram model, and observation locations of sampled values used to fit the model.
Any model passed to the regModel
slot must come with generic functions such as residuals
, fitted.values
, summary
, formula
and predict
.
regModel
:object of class "ANY"
; output of fitting a generalized linear model (GLM) or any similar regression model
svgmModel
:object of class "data.frame"
; sample variogram with semivariances and distances
vgmModel
:object of class "data.frame"
; the fitted gstat variogram model parameters containing variogram model, nugget, sill, range and the five anisotropy parameters
sp
:object of class "SpatialPointsDataFrame"
; observation locations
signature(obj = "gstatModel")
: makes predictions for a set of given predictionLocations (gridded maps) at block support corresponding to the cellsize
slot in the object of class "SpatialPixelsDataFrame"
; to produce predictions at point support, submit the predictionLocations
as "SpatialPointsDataFrame"
signature(obj = "gstatModel")
: runs n-fold cross-validation of the existing gstatModel (it re-fits the model using existing formula string and model data, then estimates the mapping error at validation locations)
signature(obj = "gstatModel", ...)
: plots goodness of fit and variogram model
"SpatialPredictions"
saves results of predictions for a single target variable, which can be of type numeric or factor. Multiple variables can be combined into a list. When using nsim
argument with the predict
method, the output result will be of type:
plotKML::RasterBrickSimulations-class
i.e. N number of equiprobable realizations. To generate an object of type:
plotKML::SpatialPredictions-class
set nsim = 0
.
Tomislav Hengl and Gerard B.M. Heuvelink
predict.gstatModel
, test.gstatModel
, plotKML::SpatialPredictions-class
, plotKML::RasterBrickSimulations-class
, gstat::gstat
, stats::glm
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
## load observations:
library(plotKML)
library(sp)
library(maptools)
demo(meuse, echo=FALSE)
data(meuse)
coordinates(meuse) <- ~x+y
proj4string(meuse) <- CRS("+init=epsg:28992")
## load grids:
data(meuse.grid)
coordinates(meuse.grid) <- ~x+y
gridded(meuse.grid) <- TRUE
proj4string(meuse.grid) <- CRS("+init=epsg:28992")
## fit a model:
omm <- fit.gstatModel(meuse, om~dist+ffreq,
fit.family=gaussian(link="log"), meuse.grid)
plot(omm)
## produce SpatialPredictions:
om.rk <- predict(omm, predictionLocations = meuse.grid)
plot(om.rk)
## run a proper cross-validation:
rk.cv <- validate(omm)
## RMSE:
sqrt(mean((rk.cv$validation$var1.pred-rk.cv$validation$observed)^2))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.