morals: Multiple Regression (MORALS).

moralsR Documentation

Multiple Regression (MORALS).

Description

Fits multiple regression within the Gifi framework.

Usage

morals(x, y, xknots = knotsGifi(x, "Q"), yknots = knotsGifi(y, "Q"), xdegrees = 2, 
ydegrees = 2, xordinal = TRUE, yordinal = TRUE, xties = "s", yties = "s", xmissing = "m", 
ymissing = "m", xactive = TRUE, xcopies = 1, itmax = 1000, eps = 1e-6, verbose = FALSE)

Arguments

x

Vector or data frame with predictor variables (all numeric)

y

Vector with response variable

xknots

Knots specification for predictors (see knotsGifi)

yknots

Knots specification for response (see knotsGifi)

xdegrees

Degree specification for predictors

ydegrees

Degree specification for response

xordinal

Whether predictors should be considered as ordinal or not. Alternatively, one can specify a boolean vector of length m denoting which variables should be ordinally restricted or not

yordinal

Whether response should be considered as ordinal or not

xties

How predictor ties should be handled: primary ("p"), secondary ("s"), or tertiary ("t")

yties

How response ties should be handled: primary ("p"), secondary ("s"), or tertiary ("t")

xmissing

How missing predictor values should be handled: multiple ("m"), single ("s"), or average ("a")

ymissing

How missing response values should be handled: multiple ("m"), single ("s"), or average ("a")

xactive

Which predictors should be active or inactive

xcopies

Number of copies for each predictor

itmax

Maximum number of iterations

eps

Convergence criterion

verbose

Iteration printout

Details

Fits MORALS as described in De Leeuw et al. (2017).

Value

rhat

Induced correlation matrix

objectscores

Object scores (rows)

xhat

Optimally transformed predictors

yhat

Optimally transformed response

ypred

Predicted (fitted) values

yres

Residuals

smc

Squared multiple correlation

ntel

Number of iterations

f

Loss function value

References

Gifi, A. (1990). Nonlinear Multivariate Analysis. New York: Wiley.

De Leeuw, J., Mair, P., Groenen, P. J. F. (2017). Multivariate Analysis with Optimal Scaling.

See Also

homals, princals, plot.morals

Examples

x <- scale(as.matrix(seq(0, pi, length = 20)), scale = FALSE)
y <- scale(as.matrix(sin(x)), scale = FALSE)
fitxy <- morals(x, y, xknots = knotsGifi(x, "E"), xdegrees = 2)
plot(fitxy, main = c("x", "y"))
plot(fitxy, plot.type = "resplot")

plot(fitxy$xhat, fitxy$yhat)
lines(fitxy$xhat, fitxy$ypred)

plot(x, fitxy$yhat)
lines(x, fitxy$ypred)

Gifi documentation built on Sept. 28, 2022, 3 a.m.

Related to morals in Gifi...