Description Usage Arguments Value Author(s) References See Also Examples
This function is used to calculate the conditional per-cluster mean expression for all observations. This value corresponds to μ = (μ_{ijlk}) = (\hat{w}_i \hat{λ}_{jk}) for the PMM-I model and μ = (μ_{ijlk}) = (\hat{w}_i s_{jl}\hat{λ}_{jk}) for the PMM-II model.
1  | PoisMixMean(y, g, conds, s, lambda)
 | 
y | 
 (n x q) matrix of observed counts for n observations and q variables  | 
g | 
 Number of clusters  | 
conds | 
 Vector of length q defining the condition (treatment group) for each variable (column) in   | 
s | 
 Estimate of normalized per-variable library size  | 
lambda | 
 (d x   | 
A list of length g containing the (n x q) matrices of mean expression for all observations, conditioned on each of the g clusters
Andrea Rau <andrea.rau@jouy.inra.fr>
Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L., Celeux G. (2015). Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics, 31(9):1420-1427.
Rau, A., Celeux, G., Martin-Magniette, M.-L., Maugis-Rabusseau, C. (2011). Clustering high-throughput sequencing data with Poisson mixture models. Inria Research Report 7786. Available at http://hal.inria.fr/inria-00638082.
PoisMixClus for Poisson mixture model estimation and model selection
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  | set.seed(12345)
## Simulate data as shown in Rau et al. (2011)
## Library size setting "A", high cluster separation
## n = 200 observations
simulate <- PoisMixSim(n = 200, libsize = "A", separation = "high")
y <- simulate$y
conds <- simulate$conditions
s <- colSums(y) / sum(y) 	## TC estimate of lib size
## Run the PMM-II model for g = 3
## "TC" library size estimate, EM algorithm
run <- PoisMixClus(y, g = 3, norm = "TC", conds = conds) 
pi.est <- run$pi
lambda.est <- run$lambda
## Calculate the per-cluster mean for each observation
means <- PoisMixMean(y, g = 3, conds, s, lambda.est) 
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.