Description Usage Arguments Value Note See Also Examples
Significance tests for a
binary regression models fit with glm
1 2 3 4 |
x |
A regression model with class |
... |
Not used. |
test |
What to test.
|
A list
of data.table
s as follows:
Wald |
The Wald test for each coefficient which is: W = B / SE[B] This should be normally distributed. |
LR |
The likelihood ratio test for each coefficient: LR = -2 * log(likelihood without / likelihood with variable) which is: LR = -2 * SUM(y * log(P / y) + (1 - y) * log((1 - P) / (1 - y))) When comparing a fitted model to a saturated model (i.e. P[i]=y[i] and likelihood =1), the LR is referred to as the model deviance, D. |
score |
The score test, also known as the
Rao, Cochran-Armitage trend and the Lagrange multiplier test.
ybar = (SUM y[i]) / n and xbar = (SUM x[i] * n[i]) / n The statistic is: ST = SUM x[i](y[i] - ybar) / (ybar(1 - ybar) SUM (x[i] - xbar)^2)^0.5 If the value of the coefficient is correct, the test should follow a standard normal distribution. |
The result has the class
"sig.glm"
.
The print
method for this class
shows only
the model coefficients and p values.
?aod::wald.test
?statmod::glm.scoretest
For corrected score tests:
?mdscore::mdscore
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | data(ageChd)
## H&L 2nd ed. Table 1.3. Page 10.
summary(g1 <- glm(chd ~ age, data=ageChd, family=binomial))
sig(g1)
data(lbw)
## Table 2.2. Page 36.
summary(g2 <- glm(LOW ~ AGE + LWT + RACE + FTV,
data=lbw, family=binomial))
sig(g2)
## Table 2.3. Pages 38-39.
summary(g3 <- glm(LOW ~ LWT + RACE,
data=lbw, family=binomial))
sig(g3, test="coef")
## RACE is more significant when dropped as a factor
##
sig(g3, test="var")
|
Call:
glm(formula = chd ~ age, family = binomial, data = ageChd)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.9718 -0.8456 -0.4576 0.8253 2.2859
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.30945 1.13365 -4.683 2.82e-06 ***
age 0.11092 0.02406 4.610 4.02e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 136.66 on 99 degrees of freedom
Residual deviance: 107.35 on 98 degrees of freedom
AIC: 111.35
Number of Fisher Scoring iterations: 4
Wald LR score
(Intercept) 2.8203e-06 0e+00 1.3187e-07 ***
age 4.0224e-06 1e-07 2.7770e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Call:
glm(formula = LOW ~ AGE + LWT + RACE + FTV, family = binomial,
data = lbw)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.4163 -0.8931 -0.7113 1.2454 2.0755
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.295366 1.071443 1.209 0.2267
AGE -0.023823 0.033730 -0.706 0.4800
LWT -0.014245 0.006541 -2.178 0.0294 *
RACEblack 1.003898 0.497859 2.016 0.0438 *
RACEother 0.433108 0.362240 1.196 0.2318
FTV -0.049308 0.167239 -0.295 0.7681
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 222.57 on 183 degrees of freedom
AIC: 234.57
Number of Fisher Scoring iterations: 4
Wald LR score
(Intercept) 0.226666 1.000000 0.086463 .
AGE 0.480006 0.476916 0.479345
LWT 0.029418 0.021061 0.026406 *
RACE 0.110204 0.109411 2.7152e-05 ***
FTV 0.768118 0.767082 0.768040
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Call:
glm(formula = LOW ~ LWT + RACE, family = binomial, data = lbw)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.3491 -0.8919 -0.7196 1.2526 2.0993
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.805753 0.845167 0.953 0.3404
LWT -0.015223 0.006439 -2.364 0.0181 *
RACEblack 1.081066 0.488052 2.215 0.0268 *
RACEother 0.480603 0.356674 1.347 0.1778
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 223.26 on 185 degrees of freedom
AIC: 231.26
Number of Fisher Scoring iterations: 4
Wald LR score
(Intercept) 0.340404 0.332365 0.339299
LWT 0.018075 0.011396 0.015448 *
RACEblack 0.026756 0.027777 0.023101 *
RACEother 0.177832 0.177812 0.176423
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Wald LR score
(Intercept) 0.340404 1.000000 0.231828
LWT 0.018075 0.011396 0.015448 *
RACE 0.067125 0.066153 2.2e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.