sparseQR-class | R Documentation |
sparseQR
is the class of sparse, row- and column-pivoted
QR factorizations of m \times n
(m \ge n
)
real matrices, having the general form
P_1 A P_2 = Q R = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1 R_1
or (equivalently)
A = P_1' Q R P_2' = P_1' \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} P_2' = P_1' Q_1 R_1 P_2'
where
P_1
and P_2
are permutation matrices,
Q = \prod_{j = 1}^{n} H_j
is an m \times m
orthogonal matrix
(Q_1
contains the first n
column vectors)
equal to the product of n
Householder matrices H_j
, and
R
is an m \times n
upper trapezoidal matrix
(R_1
contains the first n
row vectors and is
upper triangular).
The method for qr.Q
does not return Q
but rather the
(also orthogonal) product P_1' Q
. This behaviour
is algebraically consistent with the base implementation
(see qr
), which can be seen by noting that
qr.default
in base does not pivot rows, constraining
P_1
to be an identity matrix. It follows that
qr.Q(qr.default(x))
also returns P_1' Q
.
Similarly, the methods for qr.qy
and qr.qty
multiply
on the left by P_1' Q
and Q' P_1
rather than Q
and Q'
.
It is wrong to expect the values of qr.Q
(or qr.R
,
qr.qy
, qr.qty
) computed from “equivalent”
sparse and dense factorizations
(say, qr(x)
and qr(as(x, "matrix"))
for x
of class dgCMatrix
) to compare equal.
The underlying factorization algorithms are quite different,
notably as they employ different pivoting strategies,
and in general the factorization is not unique even for fixed
P_1
and P_2
.
On the other hand, the values of qr.X
, qr.coef
,
qr.fitted
, and qr.resid
are well-defined, and
in those cases the sparse and dense computations should
compare equal (within some tolerance).
The method for qr.R
is a simple wrapper around qrR
,
but not back-permuting by default and never giving row names.
It did not support backPermute = TRUE
until Matrix
1.6-0
, hence code needing the back-permuted result should
call qrR
if Matrix >= 1.6-0
is not known.
Dim
, Dimnames
inherited from virtual class
MatrixFactorization
.
beta
a numeric vector of length Dim[2]
,
used to construct Householder matrices; see V
below.
V
an object of class dgCMatrix
with Dim[2]
columns. The number of rows nrow(V)
is at least Dim[1]
and at most Dim[1]+Dim[2]
.
V
is lower trapezoidal, and its column vectors generate the
Householder matrices H_j
that compose the orthogonal
Q
factor. Specifically, H_j
is constructed as
diag(Dim[1]) - beta[j] * tcrossprod(V[, j])
.
R
an object of class dgCMatrix
with nrow(V)
rows and Dim[2]
columns.
R
is the upper trapezoidal R
factor.
p
, q
0-based integer vectors of length
nrow(V)
and Dim[2]
, respectively,
specifying the permutations applied to the rows and columns of
the factorized matrix. q
of length 0 is valid and
equivalent to the identity permutation, implying no column pivoting.
Using R syntax, the matrix P_1 A P_2
is precisely A[p+1, q+1]
(A[p+1, ]
when q
has length 0).
Class QR
, directly.
Class MatrixFactorization
, by class
QR
, distance 2.
Objects can be generated directly by calls of the form
new("sparseQR", ...)
, but they are more typically obtained
as the value of qr(x)
for x
inheriting from
sparseMatrix
(often dgCMatrix
).
determinant
signature(x = "sparseQR", logarithm = "logical")
:
computes the determinant of the factorized matrix A
or its logarithm.
expand1
signature(x = "sparseQR")
:
see expand1-methods
.
expand2
signature(x = "sparseQR")
:
see expand2-methods
.
qr.Q
signature(qr = "sparseQR")
:
returns as a dgeMatrix
either
P_1' Q
or P_1' Q_1
,
depending on optional argument complete
. The default
is FALSE
, indicating P_1' Q_1
.
qr.R
signature(qr = "sparseQR")
:
qrR
returns R
, R_1
,
R P2'
, or R_1 P2'
,
depending on optional arguments complete
and
backPermute
. The default in both cases is FALSE
,
indicating R_1
, for compatibility with base.
The class of the result in that case is
dtCMatrix
. In the other three cases,
it is dgCMatrix
.
qr.X
signature(qr = "sparseQR")
:
returns A
as a dgeMatrix
,
by default. If m > n
and optional argument
ncol
is greater than n
, then the result
is augmented with P_1' Q J
, where
J
is composed of columns (n+1)
through
ncol
of the m \times m
identity matrix.
qr.coef
signature(qr = "sparseQR", y = .)
:
returns as a dgeMatrix
or vector
the result of multiplying y
on the left by
P_2 R_1^{-1} Q_1' P_1
.
qr.fitted
signature(qr = "sparseQR", y = .)
:
returns as a dgeMatrix
or vector
the result of multiplying y
on the left by
P_1' Q_1 Q_1' P_1
.
qr.resid
signature(qr = "sparseQR", y = .)
:
returns as a dgeMatrix
or vector
the result of multiplying y
on the left by
P_1' Q_2 Q_2' P_1
.
qr.qty
signature(qr = "sparseQR", y = .)
:
returns as a dgeMatrix
or vector
the result of multiplying y
on the left by
Q' P_1
.
qr.qy
signature(qr = "sparseQR", y = .)
:
returns as a dgeMatrix
or vector
the result of multiplying y
on the left by
P_1' Q
.
solve
signature(a = "sparseQR", b = .)
:
see solve-methods
.
Davis, T. A. (2006). Direct methods for sparse linear systems. Society for Industrial and Applied Mathematics. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1137/1.9780898718881")}
Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.56021/9781421407944")}
Class dgCMatrix
.
Generic function qr
from base,
whose default method qr.default
“defines”
the S3 class qr
of dense QR factorizations.
qr-methods
for methods defined in Matrix.
Generic functions expand1
and expand2
.
The many auxiliary functions for QR factorizations:
qr.Q
, qr.R
, qr.X
,
qr.coef
, qr.fitted
, qr.resid
,
qr.qty
, qr.qy
, and qr.solve
.
showClass("sparseQR")
set.seed(2)
m <- 300L
n <- 60L
A <- rsparsematrix(m, n, 0.05)
## With dimnames, to see that they are propagated :
dimnames(A) <- dn <- list(paste0("r", seq_len(m)),
paste0("c", seq_len(n)))
(qr.A <- qr(A))
str(e.qr.A <- expand2(qr.A, complete = FALSE), max.level = 2L)
str(E.qr.A <- expand2(qr.A, complete = TRUE), max.level = 2L)
t(sapply(e.qr.A, dim))
t(sapply(E.qr.A, dim))
## Horribly inefficient, but instructive :
slowQ <- function(V, beta) {
d <- dim(V)
Q <- diag(d[1L])
if(d[2L] > 0L) {
for(j in d[2L]:1L) {
cat(j, "\n", sep = "")
Q <- Q - (beta[j] * tcrossprod(V[, j])) %*% Q
}
}
Q
}
ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)
## A ~ P1' Q R P2' ~ P1' Q1 R1 P2' in floating point
stopifnot(exprs = {
identical(names(e.qr.A), c("P1.", "Q1", "R1", "P2."))
identical(names(E.qr.A), c("P1.", "Q" , "R" , "P2."))
identical(e.qr.A[["P1."]],
new("pMatrix", Dim = c(m, m), Dimnames = c(dn[1L], list(NULL)),
margin = 1L, perm = invertPerm(qr.A@p, 0L, 1L)))
identical(e.qr.A[["P2."]],
new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
margin = 2L, perm = invertPerm(qr.A@q, 0L, 1L)))
identical(e.qr.A[["R1"]], triu(E.qr.A[["R"]][seq_len(n), ]))
identical(e.qr.A[["Q1"]], E.qr.A[["Q"]][, seq_len(n)] )
identical(E.qr.A[["R"]], qr.A@R)
## ae1(E.qr.A[["Q"]], slowQ(qr.A@V, qr.A@beta))
ae1(crossprod(E.qr.A[["Q"]]), diag(m))
ae1(A, with(e.qr.A, P1. %*% Q1 %*% R1 %*% P2.))
ae1(A, with(E.qr.A, P1. %*% Q %*% R %*% P2.))
ae2(A.perm <- A[qr.A@p + 1L, qr.A@q + 1L], with(e.qr.A, Q1 %*% R1))
ae2(A.perm , with(E.qr.A, Q %*% R ))
})
## More identities
b <- rnorm(m)
stopifnot(exprs = {
ae1(qrX <- qr.X (qr.A ), A)
ae2(qrQ <- qr.Q (qr.A ), with(e.qr.A, P1. %*% Q1))
ae2( qr.R (qr.A ), with(e.qr.A, R1))
ae2(qrc <- qr.coef (qr.A, b), with(e.qr.A, solve(R1 %*% P2., t(qrQ)) %*% b))
ae2(qrf <- qr.fitted(qr.A, b), with(e.qr.A, tcrossprod(qrQ) %*% b))
ae2(qrr <- qr.resid (qr.A, b), b - qrf)
ae2(qrq <- qr.qy (qr.A, b), with(E.qr.A, P1. %*% Q %*% b))
ae2(qr.qty(qr.A, qrq), b)
})
## Sparse and dense computations should agree here
qr.Am <- qr(as(A, "matrix")) # <=> qr.default(A)
stopifnot(exprs = {
ae2(qrX, qr.X (qr.Am ))
ae2(qrc, qr.coef (qr.Am, b))
ae2(qrf, qr.fitted(qr.Am, b))
ae2(qrr, qr.resid (qr.Am, b))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.