ValidatePairLinks: Validates the schema of a links for pairs of relatives

Description Usage Arguments Value See Also Examples

Description

A helper function that verifies the linking dataset contains (A) the essential columns exist, and (B) at least one row. It is called by CreatePairLinks.

Typical use of NlsyLinks will not require this function, since a valid paired links are supplied for each supported sample (ie, Links79Pair).

The NlsyLinks uses several types of linking schemas. This function validates the type where each relative subject has their own row.

The following four columns must be present: (1) Subect1Tag, (2) Subect2Tag, (3) R, and (4) MultipleBirth. They must have a numeric mode/datatype.

Usage

1
ValidatePairLinks(linksPair)

Arguments

linksPair

The data.frame to validate.

Value

Returns TRUE if the validation passes. Returns an error (and associated descriptive message) if it false.

See Also

Links79Pair, Links79PairExpanded,

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
dsSingleLinks <- data.frame(
  ExtendedID=c(1, 1, 1, 2),
  SubjectTag_S1=c(101, 101, 102, 201),
  SubjectTag_S2=c(102, 103, 103, 202),
  R=c(.5, .25, .25, .5),
  RelationshipPath=rep("Gen2Siblings", 4)
)
dsSingleOutcomes <- data.frame(
  SubjectTag=c(101, 102, 103, 201, 202),
  DV1=c(11, 12, 13, 41, 42),
  DV2=c(21, 22, 23, 51, 52))
dsDouble <- CreatePairLinksDoubleEntered(
  outcomeDataset=dsSingleOutcomes,
  linksPairDataset=dsSingleLinks,
  outcomeNames=c("DV1", "DV2"),
  validateOutcomeDataset=TRUE)
dsDouble #Show the 8 rows in the double-entered pair links
summary(dsDouble) #Summarize the variables

ValidatePairLinksAreSymmetric(dsDouble) #Should return TRUE.

NlsyLinks documentation built on May 2, 2019, 4:36 p.m.