Description Usage Arguments Details Value Author(s) References Examples
MCMC algorithm for Gaussian Non-decomposable graph determination using PAS algorithm.
| 1 | GWishart_PAS_DMH(b_prior, D_prior, n, S, C, beta, burnin, nmc)
 | 
| b_prior | d.f. | 
| D_prior | location | 
| n | |
| S | |
| C | initial partial covariance matrix | 
| beta | |
| burnin | number of MCMC burnin | 
| nmc | number of MCMC samples | 
Sample C from Gwishart distribution with density: p(C) \propto |C|^{(bG-2)/2} exp(-1/2 tr(C DG)) where (1) bG : d.f. (2) DG: location C: initial partial covariance matrix;
| C  | Samples from G-Wishart distribution.
The result is 3D array with  | 
| Sig  | Inverse of C
The result is 3D array with  | 
| adj |  Sampled adjacency matrix.
The result is 3D array with  | 
Hao Wang ; Sophia Zhengzi Li
Wang and Li (2011) "Efficient Gaussian Graphical Model Determination without Approximating Normalizing Constant of the G-Wishart distribution " http://www.stat.sc.edu/~wang345/RESEARCH/GWishart/GWishart.html
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |     p = 6; tedge = p*(p-1)/2; beta = 0.5; 
    indmx = matrix(1:(p^2),p,p); 
    b_prior = 3; 
    D_prior = diag(p); 
    n = 3*p; 
    b_post = b_prior+n;
    A = toeplitz(c(1,0.5,matrix(0,1,p-2))); 
    A[1,p] = 0.4; 
    A[p,1] = 0.4;
    S = solve(A)*n; 
    D_post = D_prior + S;
    adjTrue = 1*(abs(A)>0.001);  
    burnin  = 30; nmc = 100; C = diag(p); 
    resPAS_DMH <- GWishart_PAS_DMH(b_prior,D_prior,n,S,C,beta,burnin,nmc);
    C_save  <- resPAS_DMH[[1]]
    Sig_save<- resPAS_DMH[[2]]
    adj_save<- resPAS_DMH[[3]]
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.