| Profiled Confidence Intervals | R Documentation |
Compute profiled confidence intervals on parameter and return level for the GP distribution. This is achieved through the profile likelihood procedure.
gpd.pfshape(object, range, xlab, ylab, conf = 0.95, nrang = 100,
vert.lines = TRUE, ...)
gpd.pfscale(object, range, xlab, ylab, conf = 0.95, nrang = 100,
vert.lines = TRUE, ...)
gpd.pfrl(object, prob, range, thresh, xlab, ylab, conf = 0.95, nrang =
100, vert.lines = TRUE, ...)
object |
|
prob |
The probability of non exceedance. |
range |
Vector of dimension two. It gives the lower and upper bound on which the profile likelihood is performed. |
thresh |
Optional. The threshold. Only needed with non constant threshold. |
xlab, ylab |
Optional Strings. Allows to label the x-axis and y-axis. If missing, default value are considered. |
conf |
Numeric. The confidence level. |
nrang |
Numeric. It specifies the number of profile likelihood
computed on the whole range |
vert.lines |
Logical. If |
... |
Optional parameters to be passed to the
|
Returns a vector of the lower and upper bound for the profile confidence interval. Moreover, a graphic of the profile likelihood function is displayed.
Mathieu Ribatet
Coles, S. (2001). An Introduction to Statistical Modelling of Extreme Values. Springer Series in Statistics. London.
gpd.fiscale, gpd.fishape,
gpd.firl and confint
data(ardieres)
events <- clust(ardieres, u = 4, tim.cond = 8 / 365,
clust.max = TRUE)
MLE <- fitgpd(events[, "obs"], 4, 'mle')
gpd.pfshape(MLE, c(0, 0.8))
rp2prob(10, 2)
gpd.pfrl(MLE, 0.95, c(12, 25))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.