Description Usage Details Author(s) See Also
Internal functions in the PSM-package.
1 2 3 4 5 6 7 8 9 10 11 12 13 | APL.KF(THETA, Model, Pop.Data, LB = NULL, UB = NULL, GUIFlag = 0, longOutput = FALSE, fast=TRUE,Linear=NULL)
APL.KF.gr(THETA, Model, Pop.Data, LB = NULL, UB = NULL, GradSTEP = 1e-04, GUIFlag = 0, fast=TRUE,Linear=NULL)
APL.KF.individualloop(theta, OMEGA, Model, Data, GUIFlag = 0, fast=TRUE,Linear)
CutThirdDim(a)
ExtKalmanFilter(phi, Model, Data, outputInternals = FALSE)
ExtKalmanSmoother(phi, Model, Data)
IndividualLL.KF(eta, theta, OMEGA, Model, Data, fast=TRUE,Linear=NULL)
IndividualLL.KF.gr(eta, theta, OMEGA, Model, Data, GradSTEP = 1e-04, GUIFlag = 0, fast=TRUE,Linear=NULL)
LinKalmanFilter(phi, Model, Data, echo = FALSE, outputInternals = FALSE, fast=TRUE)
LinKalmanSmoother(phi, Model, Data)
ModelCheck(Model, Data, Par,DataHasY=TRUE)
logit(x, xmin, xmax)
invlogit(y, xmin, xmax)
|
APK.KFevaluates the population likelihood function.
APK.KF.grevaluates the gradient of APL.KF.
APL.KF.individualloopcontains the innner loop over individuals for APL.KF.
CutThirdDimremoves third and higher dimensions of dim-attribute for an array and thus creating a matrix.
ExtKalmanFilterPerforms a Extended Kalman filtering.
ExtKalmanSmootherperforms a non-linear Kalman smoothing.
IndividualLL.KFevaluates the indivdual neg. log-likelihood function.
IndividualLL.KF.grevaluates the gradient of the indivdual neg. log-likelihood function.
LinKalmanFilterperforms a linear Kalman filtering.
LinKalmanSmootherperforms a linear Kalman smoothing.
ModelCheckchecks for dimensionalities and model objects. Furthermore it tests the Model objects and the dimensions in the Data set.
logitgives logit transformation of a vector.
invlogitgives invlogit transformation of a vector.
Stig B. Mortensen and S<f8>ren Klim
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.