Estimate temperature sensitivity E_0 using Levenberg-Marquard optimization

Share:

Description

Estimate temperature sensitivity E_0 of fLloydTaylor for a single time series using Levenberg-Marquard optimization.

Usage

1
2
fOptimSingleE0_Lev(NEEnight.V.n, Temp_degK.V.n, Trim.n = 5, 
    recoverOnError = FALSE, algorithm = "LM")

Arguments

NEEnight.V.n

(Original) nighttime ecosystem carbon flux, i.e. respiration vector

Temp_degK.V.n

(Original) air or soil temperature vector (degC)

Trim.n

Percentile to trim residual (%)

recoverOnError

Set to TRUE to debug errors instead of catching them

algorithm

optimization algorithm used (see nlsLM from package minpack.lm)

Value

Numeric vector with following components:

R_ref

Estimate of espiration rate at reference temperature

R_ref_SD

Standard deviation of R_ref

E_0

Estimate of temperature sensitivity ("activation energy") in Kelvin (degK) for untrimmed dataset

E_0_SD

Standard deviation of E_0

E_0_trim

Estimate of temperature sensitivity ("activation energy") in Kelvin (degK) for trimmed dataset

E_0_trim_SD

Standard deviation of E_0_trim

Author(s)

TW (Department for Biogeochemical Integration at MPI-BGC, Jena, Germany)

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.