seir: The SEIR model for virus spread

Description Usage Arguments Value References

Description

The function that solves the SEIR system of differential equations.

Usage

1
2
3
4
5
6
7
8
SEIR(t, y, y0, c=0, sigma=1/5.2, gamma=1/18,
     r0=matrix(c(0,20,70,84,90,3,2.6,1.9,1,.5),ncol=2),
     type=c("Lin", "Const"))    

solveSEIR(h=1e-2, T=180, c=0, y0=c(11e6, 40, 800, 0),
          sigma=1/5.2, gamma=1/18,
          r0=matrix(c(0,20,70,84,90,3,2.6,1.9,1,.5),ncol=2),
          type=c("Lin", "Const"))

Arguments

t

Time value to evaluate the derivatives.

y

The vector is variable of interest: S, E, I and R.

y0

Initial Values

sigma

Parameter.

gamma

Parameter.

c

Mutation Parameter

h

Step size for the RK4 method

T

Final t

r0

Matrix of breaking points for R-Zero. The first column is the time of the breaking points, and the second is the values of the R-zero.

type

Types of R-Zero function. The default is a linear interpolation and the second is a piecewise constant function.

Value

It returns an object of class "seir"

References

Wang, H., Wang, Z., Dong, Y. et al (2020), Phase-adjusted estimation of the number of Coronavirus Disease 2019 cases in Wuhan, China. Cell Discov, 6, 10.


SEIR documentation built on April 14, 2020, 3:09 p.m.

Related to seir in SEIR...